scholarly journals Feasibility of Using Calcined Water Treatment Sludge in Rendering Mortars: A Technical and Sustainable Approach

2019 ◽  
Vol 11 (13) ◽  
pp. 3576 ◽  
Author(s):  
Jairo José de Oliveira Andrade ◽  
Edna Possan ◽  
Matheus Chiaradia Wenzel ◽  
Sérgio Roberto da Silva

Many current industrial processes, such as water treatment, produce large amounts of waste. The water treatment sludge (WTS) must be properly disposed of and/or used as raw material for application in other sectors, such as the construction industry. The rendering mortar production can be an environmentally friendly alternative to recycle the WTS, this being the object of this research. In this way, mortars were produced with 2.5%, 5%, 7.5%, and 10% calcined WTS to replace natural sand. The water absorption, compressive strength, bond strength, and flexural strength properties were evaluated. A natural carbonation was carried out for the determination of CO2 uptake due to carbonation. The results showed that the incorporation of calcined WTS has an influence on all the properties evaluated. Considering 50 years of service life, the CO2 uptake potential for mortar with 10% calcined sludge WTP is 111 kg CO2/t. In the sustainability approach, it was observed that CO2 uptake due to carbonation is higher in mortars with the addition of WTS, and could be an environmentally friendly alternative that compensates emissions from the cementitious materials production.

2016 ◽  
Vol 99 (6) ◽  
pp. 1533-1536 ◽  
Author(s):  
Jéssica Sayuri Hisano Natori ◽  
Eliane Gandolpho Tótoli ◽  
Hérida Regina Nunes Salgado

Abstract Norfloxacin is a broad-spectrum antimicrobial agent, widely used in humans and animals for the treatment of urinary tract infections. It is a second-generation fluoroquinolone. Several analytical methods to analyze norfloxacin have been described in the literature. However, most of them are complex and require the use of large amounts of organic solvents. This paper describes the development and validation of a green analytical method for the determination of norfloxacin in raw material by FTIR spectrophotometry. This method does not require the use of organic solvents, minimizing waste generation in the process and its environmental impacts. The development of methods that promote the reduction, prevention, or elimination of waste generation has become highly attractive to the pharmaceutical industry because of the growing demand from civil society and government authorities for environmentally friendly products and services. The FTIR spectrophotometry method was validated according to International Conference on Harmonization guidelines, showing adequate linearity (r = 0.9936), precision, accuracy, and robustness. This validated method can be used as an environmentally friendly alternative for the quantification of norfloxacin in raw material in QC routine analysis.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6539
Author(s):  
Tomasz Kamizela ◽  
Malgorzata Worwag

Biological metal leaching is a technology used in the mining and biohydrometallurgy industries where microorganisms mediate the dissolution of metals and semi-metals from mineral ores and concentrates. The technology also has great potential for various types of metal-rich waste. In this study, bioleaching was used for sludge from water treatment. In addition to checking the applicability of the process to such a substrate, the influence of experimental conditions on the effectiveness of bioleaching of metals with sludge from water treatment was also determined, including sample acidification, addition of elemental sulfur, incubation temperature, and Acidithiobacillus thiooxidans-isolated strain. The measurement of metal concentration and, on this basis, the determination of bioleaching efficiency, as well as pH and oxygen redox potential (ORP), was carried out during the experiment at the following time intervals: 3, 6, 9, 12 days. After the experiment was completed, a mass balance was also prepared. After the experiment, high efficiency of the process was obtained for the tested substrate. The effectiveness of the process for most metals was high (Ca 96.8%, Cr 92.6%, Cu 80.6%, Fe 95.6%, Mg 91%, Mn 99.5%, Ni 89.7%, Pb 99.5%, Zn 93%). Only lower values were obtained for Al (58.6%) and Cd (68.4%).


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1839 ◽  
Author(s):  
Ming Fu ◽  
Li Wang ◽  
Xianyou Wang ◽  
Boxia Deng ◽  
Xing Hu ◽  
...  

Wolfiporia cocos is a fungus containing triterpenoids and is widely used as an herbal medicine. However, it is unknown whether its main triterpenoid contents differ in different tissues. In this study, we identified dehydrotumulosic acid, polyporenic acid C, pachymic acid, dehydrotrametenolic acid, and dehydroeburicoic acid as the five main triterpenoids in W. cocos. We also systematically profiled the contents and distribution of these main triterpenoids in different tissues of W. cocos. High contents of all five triterpenoids were found in the surface layer of W. cocos. Intriguingly, we noted that the highest contents of the five triterpenoids were found in the surface layer of the sclerotium grown under pollution-controlled cultivation; the second-highest contents were found in the surface layer of the natural sclerotium. These results indicate that environmentally friendly cultivation of the sclerotium of W. cocos is a practical way to increase the productivity of W. cocos. In addition, our findings suggest that the triterpenoids may contribute to the pharmacological activity of W. cocos, and the surface layer of sclerotium in W. cocos might be a promising raw material for applications in health care and the development of functional medical products.


2015 ◽  
Vol 773-774 ◽  
pp. 916-922 ◽  
Author(s):  
Norul Ernida Zainal Abidin ◽  
Mohd Haziman Wan Ibrahim ◽  
Norwati Jamaluddin ◽  
Kartini Kamaruddin ◽  
Ahmad Farhan Hamzah

Self-compacting concrete which commonly abbrevited as SCC is a special concrete that have the ability to consilodate fully under its own self-weight without any internal or external vibration. This paper presents the experimental investigation carried out to study the strength of self-compacting concrete incorporating bottom ash at different replacement level of natural sand. The composite cement was used and the replacement level of bottom ash to natural sand is set up to 30% by volume. The strength properties such as compressive strength, split tensile strength and flexural strength of the concrete at the age of 7 and 28 days of curing day were conducted. Results shows that the strength of the concrete with bottom ash increased up to replacement level 15% higher than control specimens. This show that bottom ash can be used as supplimentary cementitious materials, having the pozzolanic reactivty.


Fitoterapia ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 55-58
Author(s):  
J. M. Steshenko ◽  
◽  
O. V. Мazulin ◽  
G. P. Smoylovska ◽  
G. V. Mazulin ◽  
...  
Keyword(s):  

1994 ◽  
Vol 77 (6) ◽  
pp. 1447-1453 ◽  
Author(s):  
Pauline M Lacrok ◽  
Norman M Curran ◽  
Wing-Wah Sy ◽  
Dennis K J Goreck ◽  
Pierre Thibault ◽  
...  

Abstract A liquid chromatographic method for the determination of amiodarone hydrochloride and 10 related compounds in drug raw material and for assay of drug in tablets was developed. The method specifies a 3 jxm Hypersil nitrile column (150 × 4.6 mm), a mobile phase of 1 + 1 acetonitrile–ammonium acetate buffer (0.1 M adjusted to pH 6.0 with 0.1 M acetic acid), a flow rate of 1 mL/min, and detection at 240 nm. The lower limit of quantitation of the related compounds is 0.02% or less. Drug contents in 2 raw material samples were 100.1 and 99.9% and ranged from 98.2 to 99.4% in 3 tablet formulations. Impurity levels in 2 samples of raw material from different manufacturers were ca 0.4%. The presence of 3 of the known related compounds in these samples was confirmed by liquid chromatographymass spectrometry. The method applied to raw materials was evaluated by a second laboratory and found to be satisfactory.


Sign in / Sign up

Export Citation Format

Share Document