scholarly journals Dynamic Evaluation and Regionalization of Maize Drought Vulnerability in the Midwest of Jilin Province

2019 ◽  
Vol 11 (15) ◽  
pp. 4234 ◽  
Author(s):  
Guo ◽  
Wang ◽  
Tong ◽  
Liu ◽  
Zhang

Drought vulnerability analysis of crops can build a bridge between hazard factors and disasters and become the main tool to mitigate the impact of drought. However, the resulting disagreement about the appropriate definition of vulnerability is a frequent cause for misunderstanding and a challenge for attempts to develop formal models of vulnerability. This paper presents a generally applicable conceptual framework of vulnerability that combines a nomenclature of vulnerable situations and a terminology of vulnerability based on the definition in the intergovernmental panel on climate change (IPCC) report. By selecting 10 indicators, the drought disaster vulnerability assessment model is established from four aspects. In order to verify our model, we present a case study of maize drought vulnerability in the Midwest of the Jilin Province. Our analysis reveals the relationship between each single factor evaluation indicator and drought vulnerability, as well as each indicator to every other indicator. The results show that the drought disturbing degree in different growth periods increases from the central part of the Jilin Province to the western part of the Jilin Province. The sensitivity degree showed an increasing trend from the southeast to the northwest. The places with the strongest self-recovery ability are mainly concentrated in Changchun, Siping, Baicheng, and the other area. The ability to adjust to drought in each growth period is weak and crop yield reduction caused by drought is easy to create. Environmental adaptability is closely related to the social and economic situation every year, so it changes greatly and is flexible. Areas with strong drought vulnerability are mainly concentrated in Baicheng, Tongyu, and Qianguo. The research results can provide a certain basis for risk assessment, early warning, and disaster prevention and mitigation of agricultural drought disaster in the research area.

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1089
Author(s):  
Menglu Chen ◽  
Shaowei Ning ◽  
Juliang Jin ◽  
Yi Cui ◽  
Chengguo Wu ◽  
...  

In recent years, drought disaster has occurred frequently in China, causing significant agricultural losses. It is increasingly important to assess the risk of agricultural drought disaster (ADD) and to develop a targeted risk management approach. In this study, an ADD risk assessment model was established. First, an improved fuzzy analytic hierarchy process based on an accelerated genetic algorithm (AGA-FAHP) was used to build an evaluation indicator system. Then, based on the indicators, the ADD assessment connection numbers were established using the improved connection number method. Finally, the entropy information diffusion method was used to form an ADD risk assessment model. The model was applied to the Huaibei Plain in Anhui Province (China), with the assessment showing that, in the period from 2008 to 2017, the plain was threatened continuously by ADD, especially during 2011–2013. The risk assessment showed that southern cities of the study area were nearly twice as likely to be struck by ADD as northern cities. Meanwhile, the eastern region had a higher frequency of severe and above-grade ADD events (once every 21 years) than the western region (once every 25.3 years). Therefore, Huainan was identified as a high-risk city and Huaibei as a low-risk city, with Suzhou and Bengbu more vulnerable to ADD than Fuyang and Bozhou. Understanding the spatial dynamics of risk in the study area can improve agricultural system resilience by optimizing planting structures and by enhancing irrigation water efficiency. This model could be used to provide support for increasing agricultural drought disaster resilience and risk management efficiency.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1244
Author(s):  
Young-Sik Mun ◽  
Won-Ho Nam ◽  
Min-Gi Jeon ◽  
Na-Kyoung Bang ◽  
Taegon Kim

Drought is a natural disaster affecting agriculture worldwide. Drought mitigation and proactive response require a comprehensive vulnerability mapping approach considering various factors. This study investigates the vulnerability to agricultural drought in South Korea based on exposure, sensitivity, and adaptability. The evaluation of agricultural drought factors yielded 14 items, which are categorized into meteorological, agricultural reservoir, social, and adaptability factors. Each item is assigned a weight using the analytical hierarchy process (AHP). We analyzed vulnerability to drought disaster in agricultural reservoirs, and generated vulnerability maps by applying the vulnerability framework for climate change. The generated map was divided into four categories based on drought vulnerability: A (Very high), B (High), C (Moderate), and D (Low). The weights for the meteorological (0.498), agricultural reservoir (0.286), social (0.166), and adaptability (0.05) factors were obtained using AHP. The rating frequencies were 41.91%, 19.76%, 9.58%, and 5.39% for A, B, C, and D, respectively. The western region is extremely vulnerable to meteorological and agricultural reservoir factors, whereas the eastern region is more vulnerable to adaptability. The results of this study visually represent agricultural drought and can be used for evaluating regional drought vulnerability for assisting preemptive drought responses to identify and support drought-prone areas.


2021 ◽  
Vol 1 (3) ◽  
Author(s):  
Genrikh Alekseev

Global numerical models of the Earth's climate system are the main tool for obtaining quantitative estimates of changes in the Earth's climate caused by anthropogenic activities. New findings from these models are regularly discussed and summarized in the Assessment reports of the Intergovernmental Panel on Climate Change (IPCC). The Sixth report is currently being prepared for release and is expected to becompleted this year. The release is preceded by an analysis of numerical experiments performed in accordance with the agreed list of global models for the CMIP6 ensemble. The previous ensemble of CMIP5 calculations was used in the preparation of the IPCC report issued in 2014. Since then, the models have been improved and refined taking into account the recommendations based on the analysis of CMIP5 calculations.


2012 ◽  
Vol 25 (11) ◽  
pp. 3792-3809 ◽  
Author(s):  
Scott B. Power ◽  
François Delage ◽  
Robert Colman ◽  
Aurel Moise

Under global warming, increases in precipitation are expected at high latitudes and near major tropical convergence zones in some seasons, while decreases are expected in many subtropical and midlatitude areas in between. In many other areas there is no consensus among models on the sign of the projected change. This is often assumed to indicate that precipitation projections in these regions are highly uncertain. Here, twenty-first century precipitation projections under the Special Report on Emissions Scenarios (SRES) A1B scenario using 24 World Climate Research Programme (WCRP)/Coupled Model Intercomparison Project phase 3 (CMIP3) climate models are examined. In areas with no consensus on the sign of projected change there are extensive subregions where the projected change is “very likely” (i.e., probability > 0.90) to be small (relative to, e.g., the size of interannual variability during the late twentieth century) or zero. The statistical significance of and interrelationships between methods used to identify model consensus on projected change in the 2007 Intergovernmental Panel on Climate Change (IPCC) report are examined, and the impact of interdependency among model projections on statistical significance is investigated. Interdependency among projections is shown to be much weaker than interdependency among simulations of climatology. The results show that there is more widespread consistency among the model projections than one might infer from the 2007 IPCC Fourth Assessment report. This discovery highlights the broader need to identify regions, variables, and phenomena that are expected to be little affected by anthropogenic climate change and to communicate this information to the wider community. This is especially important for projections of climate for the next 1–3 decades.


Author(s):  
M. von der Thannen ◽  
S. Hoerbinger ◽  
C. Muellebner ◽  
H. Biber ◽  
H. P. Rauch

AbstractRecently, applications of soil and water bioengineering constructions using living plants and supplementary materials have become increasingly popular. Besides technical effects, soil and water bioengineering has the advantage of additionally taking into consideration ecological values and the values of landscape aesthetics. When implementing soil and water bioengineering structures, suitable plants must be selected, and the structures must be given a dimension taking into account potential impact loads. A consideration of energy flows and the potential negative impact of construction in terms of energy and greenhouse gas balance has been neglected until now. The current study closes this gap of knowledge by introducing a method for detecting the possible negative effects of installing soil and water bioengineering measures. For this purpose, an environmental life cycle assessment model has been applied. The impact categories global warming potential and cumulative energy demand are used in this paper to describe the type of impacts which a bioengineering construction site causes. Additionally, the water bioengineering measure is contrasted with a conventional civil engineering structure. The results determine that the bioengineering alternative performs slightly better, in terms of energy demand and global warming potential, than the conventional measure. The most relevant factor is shown to be the impact of the running machines at the water bioengineering construction site. Finally, an integral ecological assessment model for applications of soil and water bioengineering structures should point out the potential negative effects caused during installation and, furthermore, integrate the assessment of potential positive effects due to the development of living plants in the use stage of the structures.


2021 ◽  
Vol 13 (10) ◽  
pp. 5598
Author(s):  
Stasys Mizaras ◽  
Diana Lukmine

Effective formation and implementation of forest policy can only be achieved with orientation to the most important goal—increasing society’s welfare. The global problem is, at present, that the impact of forests on society welfare indexes have not been identified. The aim of the study is to design an assessment model and assess the impact of Lithuanian forests on the society welfare index. The impact of forests was determined by multiplying the country’s welfare of society index by the forest contribution coefficient. In this study, to assess the index of the welfare of Lithuanian society, a five-dimensional model with 16 indicators was applied. The study is based on the Eurostat database and on Lithuanian forestry statistics. The Lithuanian welfare of society index calculated according to the model was 51.4% and the contribution of forests in this index was 3.9%. It represented 7.6% of the index of the welfare of society. Forests have the greatest impact in the environmental dimension, according to the assessment results.


Hydrogen ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 90-92
Author(s):  
George E. Marnellos ◽  
Thomas Klassen

The 2018 Intergovernmental Panel on Climate Change (IPCC) report [...]


Sign in / Sign up

Export Citation Format

Share Document