scholarly journals Sustainable Hydroelectric Dam Management in the Context of Climate Change: Case of the Taabo Dam in Côte D’Ivoire, West Africa

2019 ◽  
Vol 11 (18) ◽  
pp. 4846 ◽  
Author(s):  
Eric Mensah Mortey ◽  
Kouakou Lazare Kouassi ◽  
Arona Diedhiou ◽  
Sandrine Anquetin ◽  
Mathieu Genoud ◽  
...  

Management of hydroelectric dams is an aspect of sustainability that comes with resolving problems locally. The use of global indicators has not been a sustainable solution, thus the need for local indicators. Besides, current sustainability assessment tools lack the integration of climate, making assessments in a climate change context impossible. In this paper, we present management and sustainability assessment in a climate change context using sustainability indicators. We modeled a change in the climate using normal, moderate, and extreme climate conditions defined by Standardized Precipitation Indices (SPI) values. Out of 36 years analyzed, 24 years fall in the near-normal climate regime, and the remaining 12 years in moderate and extreme conditions, making near-normal climate regime the basis for managing the Taabo Dam. The impact of climate, techno-economic, and socio-environmental indicators on sustainability were investigated, and the results were analyzed according to scenarios. Climate adaptation shows higher sustainability indices than techno-economic and socio-environmental scenarios. Probability matrices show high and low values, respectively, for environmental and flooding indicators. Risk matrices, on the other hand, show that even with small probability values, risks still exist, and such small probabilities should not be taken as an absence of risk. The study reveals that sustainability can be improved by integrating climate into existing assessment methods.

Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi

<p>The impact of climate change on climatic actions could significantly affect, in the mid-term future, the design of new structures as well as the reliability of existing ones designed in accordance to the provisions of present and past codes. Indeed, current climatic loads are defined under the assumption of stationary climate conditions but climate is not stationary and the current accelerated rate of changes imposes to consider its effects.</p><p>Increase of greenhouse gas emissions generally induces a global increase of the average temperature, but at local scale, the consequences of this phenomenon could be much more complex and even apparently not coherent with the global trend of main climatic parameters, like for example, temperature, rainfalls, snowfalls and wind velocity.</p><p>In the paper, a general methodology is presented, aiming to evaluate the impact of climate change on structural design, as the result of variations of characteristic values of the most relevant climatic actions over time. The proposed procedure is based on the analysis of an ensemble of climate projections provided according a medium and a high greenhouse gas emission scenario. Factor of change for extreme value distribution’s parameters and return values are thus estimated in subsequent time windows providing guidance for adaptation of the current definition of structural loads.</p><p>The methodology is illustrated together with the outcomes obtained for snow, wind and thermal actions in Italy. Finally, starting from the estimated changes in extreme value parameters, the influence on the long-term structural reliability can be investigated comparing the resulting time dependent reliability with the reference reliability levels adopted in modern Structural codes.</p>


2021 ◽  
Author(s):  
Marine Prieur ◽  
Alexander C. Whittaker ◽  
Fritz Schlunegger ◽  
Tor O. Sømme ◽  
Jean Braun ◽  
...  

&lt;p&gt;Sedimentary dynamics and fluxes are influenced by both autogenic and allogenic forcings. A better understanding of the evolution of sedimentary systems through time and space requires us to decipher, and therefore to characterise, the impact of each of these on the Earth&amp;#8217;s landscape. Given the current increase in the concentration of atmospheric carbon, studying the impact of rapid and global climate changes is of particular importance at the present time. Such events have been clearly defined in the geologic record. Among them, the Paleocene-Eocene Thermal Maximum (PETM) has been extensively studied worldwide and represents a possible analogue of the rapid current climate warming.&lt;/p&gt;&lt;p&gt;The present project focuses on the Southern Pyrenees (Spain) where excellent exposures of the Paleocene-Eocene interval span a large range of depositional environments from continental to deep-marine. These conditions allow us to collect data along the whole depositional system in order to document changes in sediment fluxes and paleohydraulic conditions. Because hydrological conditions have an impact on sediment transport through hydrodynamics, paleoflow reconstructions can shed light on changes in sediment dynamics. This information is reconstructed from the statistical distributions of channel morphologies, characteristic system dimensions including bankfull channel depth and width, and grain-sizes.&lt;/p&gt;&lt;p&gt;With this approach, our aim is to provide both qualitative and quantitative assessments of the magnitude and extent of the perturbation of sedimentary fluxes along an entire source-to-sink system during an episode of extreme climate change. This will lead to a better understanding of the impact of abrupt climate change on earth surface systems in mid-latitudinal areas, with possible implications for current climate adaptation policy.&lt;/p&gt;&lt;p&gt;This research is carried out in the scope of the lead author&amp;#8217;s PhD project and is part of the S2S-FUTURE European Marie Sk&amp;#322;odowska-Curie ITN (Grant Agreement No 860383).&lt;/p&gt;


2021 ◽  
Author(s):  
luis Augusto sanabria ◽  
Xuerong Qin ◽  
Jin Li ◽  
Robert Peter Cechet

Abstract Most climatic models show that climate change affects natural perils' frequency and severity. Quantifying the impact of future climate conditions on natural hazard is essential for mitigation and adaptation planning. One crucial factor to consider when using climate simulations projections is the inherent systematic differences (bias) of the modelled data compared with observations. This bias can originate from the modelling process, the techniques used for downscaling of results, and the ensembles' intrinsic variability. Analysis of climate simulations has shown that the biases associated with these data types can be significant. Hence, it is often necessary to correct the bias before the data can be reliably used for further analysis. Natural perils are often associated with extreme climatic conditions. Analysing trends in the tail end of distributions are already complicated because noise is much more prominent than that in the mean climate. The bias of the simulations can introduce significant errors in practical applications. In this paper, we present a methodology for bias correction of climate simulated data. The technique corrects the bias in both the body and the tail of the distribution (extreme values). As an illustration, maps of the 50 and 100-year Return Period of climate simulated Forest Fire Danger Index (FFDI) in Australia are presented and compared against the corresponding observation-based maps. The results show that the algorithm can substantially improve the calculation of simulation-based Return Periods. Forthcoming work will focus on the impact of climate change on these Return Periods considering future climate conditions.


Author(s):  
Maria Polozhikhina ◽  

Climate conditions remain one of the main risk factors for domestic agriculture, and the consequences of global climate change are ambiguous in terms of prospects for agricultural production in Russia. This paper analyzes the impact of climate change on the country’s food security from the point of view of its self-sufficiency in grain primarily. Specific conditions prevailing on the Crimean peninsula are also considered.


2021 ◽  
Author(s):  
Bekam Bekele Gulti ◽  
Boja Mokonnen Manyazew ◽  
Abdulkerim Bedewi Serur

Abstract Climate change (CC) and land use/cover change (LUCC) are the main drivers of streamflow change. In this paper, we investigate the impact of climate and LULC change impact on stream flow of Guder catchment by using Soil and Water Assessment model (SWAT). The scenarios were designed in a way that LULC was changed while climate conditions remain constant; LULC was then held constant under a changing climate and combined effect of both. The result shows that, the combined impacts of climate change and LULC dynamics can be rather different from the effects that follow-on from LULC or climate change alone. Streamflow would be more sensitive to climate change than to the LULC changes scenario, even though changes in LULC have far-reaching influences on streamflow in the study region. A comprehensive strategy of low impact developments, smart growth, and open space is critical to handle future changes to streamflow systems.


2021 ◽  
Author(s):  
Pierre-Antoine Versini ◽  
Daniel Schertzer ◽  
Mathilde Loury

&lt;p&gt;Nature-Based Solutions (NBS) appear as some relevant alternatives to mitigate the consequences of climate change. For this reason, they are promoted for the implementation of the national plan for adaptation to climate change (PNACC) in France, in line with the Paris Agreement, the strategy of the European Union for adaptation to climate change and the French national strategy for biodiversity.&lt;/p&gt;&lt;p&gt;Nevertheless, this ambitious goal of democratizing NBS poses some institutional and technical challenges because many obstacles remain to their implementation. Overcoming these shortcomings is the objective of the LIFE integrated project called ARTISAN (Achieving Resiliency by Triggering Implementation of nature-based Solutions for climate Adaptation at a National scale). Coordinated by the French Biodiversity Office (OFB), its consortium regroups several local authorities, technical, research and education institutes.&lt;/p&gt;&lt;p&gt;For this purpose, ARTISAN is creating a framework promoting the implementation of NBS by improving scientific and technical knowledge about them, then by developing and disseminating relevant tools for project leaders (for the design, sizing, implementation and evaluation of ecosystem performance).&lt;/p&gt;&lt;p&gt;To demonstrate that NBS can respond to a diversity of climatic, ecological and institutional contexts, 10 pilot sites will be monitored in metropolitan and overseas France. The concerned issues are for example the reduction of urban heat island by the de-waterproofing of the public space, the limitation of the impact of cyclonic episodes on the urbanized coastline overseas by promoting the restoration of the mangrove, and the decrease of agricultural water stress during the low flow period by the hydromorphological restoration of wetlands. These pilot sites will serve to develop, improve and validate operational tools, methods and trainings devoted to practitioners.&lt;/p&gt;


Author(s):  
John Luke Gallup

It’s complicated. Tropical diseases have unusually intricate life cycles because most of them involve not only a human host and a pathogen, but also a vector host. The diseases are predominantly tropical due to their sensitivity to local ecology, usually due to the vector organism. The differences between the tropical diseases mean that they respond to environmental degradation in various ways that depend on local conditions. Urbanization and water pollution tend to limit malaria, but deforestation and dams can exacerbate malaria and schistosomiasis. Global climate change, the largest environmental change, will likely extend the range of tropical climate conditions to higher elevations and near the limits of the tropics, spreading some diseases, but will make other areas too dry or hot for the vectors. Nonetheless, the geographical range of tropical diseases will be primarily determined by public health efforts more than climate. Early predictions that malaria will spread widely because of climate change were flawed, and control efforts will probably cause it to diminish further. The impact of human disease on economic development is hard to pin down with confidence. It may be substantial, or it may be misattributed to other influences. A mechanism by which tropical disease may have large development consequences is its deleterious effects on the cognitive development of infants, which makes them less productive throughout their lives.


2022 ◽  
pp. 748-763
Author(s):  
Ashok K. Rathoure ◽  
Unnati Rajendrakumar Patel

Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this chapter, the authors first examined the different possible effects of climate change that can operate at individual, population, species, community, ecosystem, notably showing that species can respond to climate challenges by shifting their climatic change. Climate change is one of the most important global environmental challenges that affect all the natural ecosystems of the world. Due to the fragile environment, mountain ecosystems are the most vulnerable to the impact of climate change. Climatic change will affect vegetation, humans, animals, and ecosystem that will impact on biodiversity. Mountains have been recognized as important ecosystems by the Convention on Biological Diversity. Climate change will not only threaten the biodiversity, but also affect the socio-economic condition of the indigenous people of the state. Various activities like habitat loss, deforestation, and exploitation amplify the impact of climate change on biodiversity.


Author(s):  
Rod J. Snowdon ◽  
Benjamin Wittkop ◽  
Tsu-Wei Chen ◽  
Andreas Stahl

AbstractMajor global crops in high-yielding, temperate cropping regions are facing increasing threats from the impact of climate change, particularly from drought and heat at critical developmental timepoints during the crop lifecycle. Research to address this concern is frequently focused on attempts to identify exotic genetic diversity showing pronounced stress tolerance or avoidance, to elucidate and introgress the responsible genetic factors or to discover underlying genes as a basis for targeted genetic modification. Although such approaches are occasionally successful in imparting a positive effect on performance in specific stress environments, for example through modulation of root depth, major-gene modifications of plant architecture or function tend to be highly context-dependent. In contrast, long-term genetic gain through conventional breeding has incrementally increased yields of modern crops through accumulation of beneficial, small-effect variants which also confer yield stability via stress adaptation. Here we reflect on retrospective breeding progress in major crops and the impact of long-term, conventional breeding on climate adaptation and yield stability under abiotic stress constraints. Looking forward, we outline how new approaches might complement conventional breeding to maintain and accelerate breeding progress, despite the challenges of climate change, as a prerequisite to sustainable future crop productivity.


2020 ◽  
Author(s):  
Jaromir Krzyszczak ◽  
Piotr Baranowski ◽  
Monika Zubik

&lt;p&gt;Climate change uncertainty largely complicates adaptation and risk management evaluation at the regional level, therefore new approaches for managing this uncertainty are still being developed. In this study three crop models (DNDC, WOFOST and DSSAT) were used to explore the utility of impact response surfaces (IRS) and adaptation response surfaces (ARS) methodologies (Pirttioja et al., 2015; Ruiz-Ramos et al., 2018).&lt;/p&gt;&lt;p&gt;To build IRS, the sensitivity of modelled yield to systematic increments of changes in temperature (-1 to +6&amp;#176;C) and precipitation (-30 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather. Four levels of CO2 (360, 447, 522 and 601 ppm) representing future conditions until 2070 were considered. In turn, to build ARS, adaptation options were: shortening or extending the crop cycle of the standard cultivar, sowing earlier or later than the standard date and additional irrigation. Preliminary data indicate that yields are declining with higher temperatures and decreased precipitation. Yield is more sensitive to changes in baseline temperature values and much less sensitive to changes in baseline precipitation values for arable fields in Finland, while for arable fields in Germany, ARS indicates yield sensitivity at a similar level for both variables. Also, our data suggests that some adaptation options provides increase of the yield up to 1500 kg/ha, which suggest that ARSs may be valuable tool for planning an effective adaptation treatments. This research shows how to analyze and assess the impact of adaptation strategies in the context of the high level of regional uncertainty in relation to future climate conditions. Developed methodology can be applied to other climatic zones to help in planning adaptation and mitigation strategies.&lt;/p&gt;&lt;p&gt;This study has been partly financed from the funds of the Polish National Centre for Research and Development in frame of the project: MSINiN, contract number: BIOSTRATEG3/343547/8/NCBR/2017&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document