scholarly journals Modeling Flash Floods and Induced Recharge into Alluvial Aquifers Using Multi-Temporal Remote Sensing and Electrical Resistivity Imaging

2020 ◽  
Vol 12 (23) ◽  
pp. 10204
Author(s):  
Omnia El-Saadawy ◽  
Ahmed Gaber ◽  
Abdullah Othman ◽  
Abotalib Z. Abotalib ◽  
Mohammed El Bastawesy ◽  
...  

Flash flood hazard assessments, mitigation measures, and water harvesting efforts in desert environments are often challenged by data scarcity on the basin scale. The present study, using the Wadi Atfeh catchment as a test site, integrates remote sensing datasets with field and geoelectrical measurements to assess flash flood hazards, suggest mitigation measures, and to examine the recharge to the alluvium aquifer. The estimated peak discharge of the 13 March 2020 flood event was 97 m3/h, which exceeded the capacity of the culverts beneath the Eastern Military Highway (64 m3/h), and a new dam was suggested, where 75% of the catchment could be controlled. The monitoring of water infiltration into the alluvium aquifer using time-lapse electrical resistivity measurements along a fixed profile showed a limited connection between the wetted surficial sediments and the water table. Throughflow is probably the main source of recharge to the aquifer rather than vertical infiltration at the basin outlet. The findings suggest further measures to avoid the negative impacts of flash floods at the Wadi Atfeh catchment and similar basins in the Eastern Desert of Egypt. Furthermore, future hydrological studies in desert environments should take into consideration the major role of the throughflow in alluvium aquifer recharge.

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Hanaa A. Megahed ◽  
Mohammed A. El Bastawesy

Abstract Background This paper discusses the hydrological problems assessment of flash floods and the encroachment of wastewater in selected urban areas of Greater Cairo using remote sensing and geographic information system (GIS) techniques. The integration of hydrogeological and geomorphological analyses with the fieldwork of drainage basins (Wadi Degla) hosting these urban areas endeavors to provide the optimum mitigation measures that can be feasibly taken to achieve sustainability of the urban areas and water resources available. Results Landsat 5 and Sentinel-2 satellite images were obtained shortly before and after flash flood events and were downloaded and analyzed to define the active channels, urban interference, storage areas, and the natural depressions response. The quantitative flash flood estimates include total GSMap meteorological data sets, parameters of rainfall depths from remote sensing data, active channel area from satellite images, and storage areas that flooded. In GIS, digital elevation model was used to estimate the hydrographic parameters: flow direction within the catchment, flow accumulation, time zone of the catchment, and estimating of the water volume in the largely inundated depressions. Conclusions Based on the results obtained from the study of available satellite images, it has been shown that there are two significant hydrological problems, including the lack of flash flood mitigation measures for urban areas, as the wastewater depressions and sanitary facilities are dotting in the downstream areas.


2021 ◽  
pp. 1-40
Author(s):  
Okechukwu Livinus Obiegbu

Flash floods have led to disruptions of human activities and the destruction of properties particularly in the Nuweiba region of Southeast Sinai. Despite the arid nature of Sinai, flash floods still pose a great hazard to the region. Using remote sensing characterization, geohazard models were developed to identify flash flood areas, delineate and discriminate morphological features, active channels areas and soil physiography with a view to categorize risk areas exposed to flash floods hazards in a hazard map and proffer measures for mitigation. The characterization was achieved using a workflow model developed from spatial datasets of Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) and the red-green-blue (RGB) composites from Landsat bands 7 ETM+. The data was used to investigate and assess flash flood areas for morphological attributes, watershed basin characterization, generation of false color composite from Landsat 7 ETM+ 7, 4 and 2 RGB bands and Principal Component Analysis (PCA) band from composite of 742 RGB. Multivariate analysis of generated raster layer attributes provided enhancements and attribute discrimination for delineating areas of active flood channels, upslope zones and soil physiography discrimination from their spectral reflectance. The results are presented in an integrated approach of remote sensing with geographic information systems (GIS) and indicates that the soil types and geological units contribute greatly towards activation of these flash floods which is triggered by intense rainstorms. Components of generated map attributes of SRTM DEM, gradient of DEM and Landsat 7 ETM+ composite of 742 bands in GIS were used to generate a hazard map using spatial analysis to depict the nature and scale of issues identified. Due to flash floods vulnerabilities, the study area was classified into stable/low, moderate and high-risk areas. Mitigation measures to control flash floods were proposed to enable adequate preparations to mitigate impending flash flood disasters.


2021 ◽  
Vol 13 (9) ◽  
pp. 1818
Author(s):  
Lisha Ding ◽  
Lei Ma ◽  
Longguo Li ◽  
Chao Liu ◽  
Naiwen Li ◽  
...  

Flash floods are among the most dangerous natural disasters. As climate change and urbanization advance, an increasing number of people are at risk of flash floods. The application of remote sensing and geographic information system (GIS) technologies in the study of flash floods has increased significantly over the last 20 years. In this paper, more than 200 articles published in the last 20 years are summarized and analyzed. First, a visualization analysis of the literature is performed, including a keyword co-occurrence analysis, time zone chart analysis, keyword burst analysis, and literature co-citation analysis. Then, the application of remote sensing and GIS technologies to flash flood disasters is analyzed in terms of aspects such as flash flood forecasting, flash flood disaster impact assessments, flash flood susceptibility analyses, flash flood risk assessments, and the identification of flash flood disaster risk areas. Finally, the current research status is summarized, and the orientation of future research is also discussed.


2021 ◽  
Author(s):  
Mohamed Abd-el-Kader ◽  
Ahmed Elfeky ◽  
Mohamed Saber ◽  
Maged AlHarbi ◽  
abed Alataway

Abstract Flash floods are highly devastating, however there is no effective management for their water in Saudi Arabia, therefore, it is crucial to adopt Rainfall Water Harvesting (RWH) techniques to mitigate the flash floods and manage the available water resources from the infrequent and rare rainfall storms. The goal of this study is to create a potential flood hazard map and a map of suitable locations for RWH in Wadi Nisah, Saudi Arabia for future water management and flood prevention plans and to identify potential areas for rainwater harvesting and dam construction for both a flood mitigation and water harvesting. This research was carried out using a spatiotemporal distributed model based on multi-criteria decision analysis by combining Geographic Information System (GIS), Remote Sensing (RS), and Multi-Criteria Decision-Making tools (MCDM). The flood hazard mapping criteria were elevation, drainage density, slope, direct runoff depth at 50 years return period, Topographic witness index, and Curve Number, according to the Multi-criteria decision analysis, while the criteria for RWH were Slope, Land cover, Stream order, Lineaments density, and Average of annual max-24hr Rainfall. The weight of each criteria was estimated based on Analytical Hierarchy Process (AHP). In multi-criteria decision analysis, 21.55 % of the total area for Wadi Nisah was classified as extremely dangerous and dangerous; 65.29 % of the total area was classified as moderate; and 13.15 % of the total area was classified as safe and very safe in flash flood hazard classes. Only 15% of Wadi Nisah has a very high potentiality for RWH and 27.7%, 57.31% of the basin has a moderate and a low or extremely low potentiality of RWH, respectively. According to the developed RWH potentiality map, two possible dam sites were proposed. The maximum height of the proposed dams, which corresponded to the cross section of dam locations, ranged from 6.2 to 9 meters; the maximum width of dams ranged from 573.48 to 725 meters; the maximum storage capacity of reservoirs, which corresponded to the distribution of topographic conditions in the surrounding area, ranged from 3976104.499 m3 to 4328509.123 m3; and the maximum surface area of reservoirs ranged from 1268372.625 m2 to 1505825.676.14 m2. These results are highly important for the decision makers for not only flash flood mitigation but also water management in the study area.


2020 ◽  
Author(s):  
Marc Berenguer ◽  
Shinju Park ◽  
Daniel Sempere-Torres

<p>Radar rainfall estimates and nowcasts have been used in Catalonia (NE Spain) for real-time flash flood hazard nowcasting based on the basin-aggregated rainfall for several years. This approach has been further developed within the European Projects ERICHA (www.ericha.eu) and ANYWHERE (www.anywhere-h2020.eu), where it has been demonstrated to monitor flash floods in real time in several locations and at different spatial scales (from regional to Continental coverage).</p><p>The work summarizes the main results of the recent projects, analysing the performance of the flash flood nowcasting system. The results obtained on recent events  show the main advantages and some of the limitations of the system.</p>


2021 ◽  
pp. 3-34
Author(s):  
Sameh A. Kantoush ◽  
Mohamed Saber ◽  
Mohammed Abdel-Fattah ◽  
Tetsuya Sumi

AbstractSustainable management of wadi flash flood (WFF) risks is desperately needed to secure development in wadi systems. Due to rapid flow generation with sudden high flood peaks, spatiotemporal variability of rainfall occurrence, and poorly sited rapid development, most Middle East and North Africa (MENA) region have no comprehensive proper protection from WFFs. In arid regions, single mitigation measures, including storage dams, recharge dams, artificial lakes and embankments, are implemented, although soft mitigation measures are not dominant, such as early warning systems. The single management strategy under climate change impacts is not adequate to reduce flash flood risks; an integrated strategy is required. The objective of the international symposium on flash floods (ISFF) project has been to develop scientific understanding of WFFs in wadi systems; monitor, model, and mitigate; issue warnings; and plan urban development by discussing and networking the strategies in the MENA region. To achieve this goal, the project defines priorities for future research challenges and potential projects for WFFs. This chapter provides a state-of-the-art scientific basis in terms of integrated flash flood management. Further, priorities are defined for the main research gaps, and the emerging research methodologies can contribute to guide the management of WFFs in such regions.


2007 ◽  
Vol 40 (4) ◽  
pp. 1621
Author(s):  
E. Sambaziotis ◽  
I. Fountoulis

In this paper it is an effort to combine different methodologies in order to locate the sensitive sites in flash flood phenomena in a relatively small catchment located north of Kalamata (Messinia SW Péloponnèse, Greece). Based on digitised topographic map (scale 1/5.000) the longitudinal, gradient and stream power profiles of the watercourses were constructed and the results (possibly sensitive to flash floods sites) were compared to ones that came from applying hydrological simulation, hydrographs as well as Instantaneous Unitary Hydrographs. The comparison showed that the results were in good agreement.


2021 ◽  
Vol 7 (21) ◽  
pp. 142-149
Author(s):  
Văn Trần Đức

Tuyen Quang is one of the provinces at high risk of flash floods in the Northern Midlands and Mountains of Vietnam. In the rainy season, like other localities in the region, Tuyen Quang has a long, concentrated rainfall combined with steep hills and mountains, large divisions, many rivers, and streams; In addition, the thinning of the vegetation cover due to excessive exploitation of the forest by the local people causes flash floods to appear more and more. Applying GIS and remote sensing to establish a map of flash flood risk is a quantitative approach and high reliability. This article has established a flash flood hazard map at a scale of 1/100,000 in Tuyen Quang province. In the map database, districts with a high risk of flash flood were identified, including Na Hang, Chiem Hoa, Ham Yen, and Lam Binh, the average flash flood hazard level included districts: Yen Son, Son Duong; Tuyen Quang city has a low risk of flash floods.


2021 ◽  
pp. 355-381
Author(s):  
Mohamed Saber ◽  
Sameh A. Kantoush ◽  
Mohammed Abdel-Fattah ◽  
Tetsuya Sumi ◽  
Jose Andres Moya ◽  
...  

AbstractThe behaviors and impacts of flash floods (FF) are different based on the climatic regions. To understand such difference, two case studies were selected for the analysis: Wadi Uday, Oman and Sume Basin, Paraiba, Brazil. The rainfall-runoff inundation model (RRI) was used to simulate the discharge and flood inundation of the recent flood events to understand the severity and frequency of flash floods to better assess the current mitigation measures. The current FF situations in arid and semiarid basins were analyzed, and the hazards associated with flood phenomenon were assessed for various calculated rainfall return periods using RRI model. To this end, a flash flood index (average water depth per total basin area) was calculated as a basis to understand the impact of flash floods. A coupling of this index with the FF histories was included to provide a comprehensive overview of the FF vulnerability of arid and semiarid basins. We concluded that FFs tend to be more severe and extreme in arid regions than in semiarid regions, despite the lower frequency of FFs and the water scarcity in arid regions. Distributed dams also proved to be more effective in preventing FFs in arid regions than in semiarid regions.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2116 ◽  
Author(s):  
Mihnea Cristian Popa ◽  
Daniel Peptenatu ◽  
Cristian Constantin Drăghici ◽  
Daniel Constantin Diaconu

The importance of identifying the areas vulnerable for both floods and flash-floods is an important component of risk management. The assessment of vulnerable areas is a major challenge in the scientific world. The aim of this study is to provide a methodology-oriented study of how to identify the areas vulnerable to floods and flash-floods in the Buzău river catchment by computing two indices: the Flash-Flood Potential Index (FFPI) for the mountainous and the Sub-Carpathian areas, and the Flood Potential Index (FPI) for the low-altitude areas, using the frequency ratio (FR), a bivariate statistical model, the Multilayer Perceptron Neural Networks (MLP), and the ensemble model MLP–FR. A database containing historical flood locations (168 flood locations) and the areas with torrentiality (172 locations with torrentiality) was created and used to train and test the models. The resulting models were computed using GIS techniques, thus resulting the flood and flash-flood vulnerability maps. The results show that the MLP–FR hybrid model had the most performance. The use of the two indices represents a preliminary step in creating flood vulnerability maps, which could represent an important tool for local authorities and a support for flood risk management policies.


Sign in / Sign up

Export Citation Format

Share Document