scholarly journals Numerical Analysis of Flow Around a Cylinder in Critical and Subcritical Regime

2021 ◽  
Vol 13 (4) ◽  
pp. 2048
Author(s):  
Ivan Kološ ◽  
Vladimíra Michalcová ◽  
Lenka Lausová

Modeling the wind flow around cylindrical buildings is one of the problems within urban physics. Despite the simple geometry of the cylinder, it is an interesting physical phenomenon. Partial knowledge of flow field properties can be found in the literature, but in terms of their use for practical tasks, the data are still incomplete. The authors performed a numerical analysis of the flow around the smooth cylinder in the subcritical and critical regime for Reynolds numbers in the range of Re = 2.3 × 103 to 4 × 105. Turbulent flow was solved using LES model and the numerical solution was compared with available data from experiments or standard. Analysis of the mean stream velocity showed the elongation of the core of the wake with decreasing Re. The pressure coefficient evaluation showed a big difference between its distribution in the subcritical and critical regime. In the subcritical regime, a significant increase in the minimum value and a shift of the extreme close to the axis of the cylinder is proven. The results of the drag coefficient confirm a significant decrease in the transition from subcritical to critical regime, which is indicated in the cited experiments.

1994 ◽  
Vol 258 ◽  
pp. 287-316 ◽  
Author(s):  
C. Norberg

The investigation is concentrated on two important quantities – the Strouhal number and the mean base suction coefficient, both measured at the mid-span position. Reynolds numbers from about 50 to 4 × 104 were investigated. Different aspect ratios, at low blockage ratios, were achieved by varying the distance between circular end plates (end plate diameter ratios between 10 and 30). It was not possible, by using these end plates in uniform flow and at very large aspect ratios, to produce parallel shedding all over the laminar shedding regime. However, parallel shedding at around mid-span was observed throughout this regime in cases when there was a slight but symmetrical increase in the free-stream velocity towards both ends of the cylinder. At higher Re, the results at different aspect ratios were compared with those of a ‘quasi-infinite cylinder’ and the required aspect ratio to reach conditions independent of this parameter, within the experimental uncertainties, are given. For instance, aspect ratios as large as L/D = 60–70 were needed in the range Re ≈ 4 × 103–104. With the smallest relative end plate diameter and for aspect ratios smaller than 7, a bi-stable flow switching between regular vortex shedding and ‘irregular flow’ was found at intermediate Reynolds number ranges in the subcritical regime (Re ≈ 2 × 103).


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


2014 ◽  
Vol 543-547 ◽  
pp. 434-440
Author(s):  
Qiang Liu ◽  
Wei Xie ◽  
Wen Yang Duan ◽  
Chang Hong Hu

Based on fully structured grids parallel numerical simulations of flow around a cylinder under different Reynolds number are carried out. Two-dimensional and three-dimensional models are established at the same time under specific Reynolds number, and further analyze of three-dimensional flow characteristics as well as the generated influence to overall physical quantities are presented. In order to explore efficient high Reynolds number turbulence models, a comparative research of the LES model without wall functions and the Spalart-Allmaras turbulence model is carried out. In order to improve the computational efficiency, a domain decomposition parallel computing strategy is used, and a calculation strategy that results of coarse grid was assigned to fine grid as initial field value by 3D linear interpolation is presented. Simulation results show that: Drag coefficient and Strouhal number have very good consistency with the experimental data, which verifies the correctness of the calculation method; Even if at low Reynolds number (200≤Re≤300), using a three-dimensional model is still necessary; While in the high Reynolds number stage, compared to LES model without wall functions, Spalart-Allmaras model is more applicable and more efficient.


Author(s):  
N Kharoua ◽  
L Khezzar

Large eddy simulation of turbulent flow around smooth and rough hemispherical domes was conducted. The roughness of the rough dome was generated by a special approach using quadrilateral solid blocks placed alternately on the dome surface. It was shown that this approach is capable of generating the roughness effect with a relative success. The subgrid-scale model based on the transport of the subgrid turbulent kinetic energy was used to account for the small scales effect not resolved by large eddy simulation. The turbulent flow was simulated at a subcritical Reynolds number based on the approach free stream velocity, air properties, and dome diameter of 1.4 × 105. Profiles of mean pressure coefficient, mean velocity, and its root mean square were predicted with good accuracy. The comparison between the two domes showed different flow behavior around them. A flattened horseshoe vortex was observed to develop around the rough dome at larger distance compared with the smooth dome. The separation phenomenon occurs before the apex of the rough dome while for the smooth dome it is shifted forward. The turbulence-affected region in the wake was larger for the rough dome.


2018 ◽  
Vol 8 (11) ◽  
pp. 2266 ◽  
Author(s):  
Shoutu Li ◽  
Ye Li ◽  
Congxin Yang ◽  
Xuyao Zhang ◽  
Qing Wang ◽  
...  

The airfoil plays an important role in improving the performance of wind turbines. However, there is less research dedicated to the airfoils for Vertical Axis Wind Turbines (VAWTs) compared to the research on Horizontal Axis Wind Turbines (HAWTs). With the objective of maximizing the aerodynamic performance of the airfoil by optimizing its geometrical parameters and by considering the law of motion of VAWTs, a new airfoil, designated the LUT airfoil (Lanzhou University of Technology), was designed for lift-driven VAWTs by employing the sequential quadratic programming optimization method. Afterwards, the pressure on the surface of the airfoil and the flow velocity were measured in steady conditions by employing wind tunnel experiments and particle image velocimetry technology. Then, the distribution of the pressure coefficient and aerodynamic loads were analyzed for the LUT airfoil under free transition. The results show that the LUT airfoil has a moderate thickness (20.77%) and moderate camber (1.11%). Moreover, compared to the airfoils commonly used for VAWTs, the LUT airfoil, with a wide drag bucket and gentle stall performance, achieves a higher maximum lift coefficient and lift–drag ratios at the Reynolds numbers 3 × 105 and 5 × 105.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 36
Author(s):  
Jiyang Qi ◽  
Yue Qi ◽  
Qunyan Chen ◽  
Fei Yan

In this study, the drag reduction effect is studied for a cylinder with different V-groove depths on its surface using a k-ω/SST (Shear Stress Transport) turbulence model of computational fluid dynamics (CFD), while a particle image velocimetry (PIV) system is employed to analyze the wake characteristics for a smooth cylinder and a cylinder with different V-groove depths on its surface at different Reynolds numbers. The study focuses on the characteristics of the different V-groove depths on lift coefficient, drag coefficient, the velocity distribution of flow field, pressure coefficient, vortex shedding, and vortex structure. In comparison with a smooth cylinder, the lift coefficient and drag coefficient can be reduced for a cylinder with different V-groove depths on its surface, and the maximum reduction rates of lift coefficient and drag coefficient are about 34.4% and 16%, respectively. Otherwise, the vortex structure presents a complete symmetry for the smooth cylinder, however, the symmetry of the vortex structure becomes insignificant for the V-shaped groove structure with different depths. This is also an important reason for the drag reduction effect of a cylinder with a V-groove surface.


2011 ◽  
Vol 685 ◽  
pp. 461-494 ◽  
Author(s):  
Alain Merlen ◽  
Christophe Frankiewicz

AbstractThe flow around a cylinder rolling or sliding on a wall was investigated analytically and numerically for small Reynolds numbers, where the flow is known to be two-dimensional and steady. Both prograde and retrograde rotation were analytically solved, in the Stokes regime, giving the values of forces and torque and a complete description of the flow. However, solving Navier–Stokes equation, a rotation of the cylinder near the wall necessarily induces a cavitation bubble in the nip if the fluid is a liquid, or compressible effects, if it is a gas. Therefore, an infinite lift force is generated, disconnecting the cylinder from the wall. The flow inside this interstice was then solved under the lubrication assumptions and fully described for a completely flooded interstice. Numerical results extend the analysis to higher Reynolds number. Finally, the effect of the upstream pressure on the onset of cavitation is studied, giving the initial location of the phenomenon and the relation between the upstream pressure and the flow rate in the interstice. It is shown that the flow in the interstice must become three-dimensional when cavitation takes place.


1991 ◽  
Vol 113 (3) ◽  
pp. 384-398 ◽  
Author(s):  
M. P. Arnal ◽  
D. J. Goering ◽  
J. A. C. Humphrey

The characteristics of the flow around a bluff body of square cross-section in contact with a solid-wall boundary are investigated numerically using a finite difference procedure. Previous studies (Taneda, 1965; Kamemoto et al., 1984) have shown qualitatively the strong influence of solid-wall boundaries on the vortex-shedding process and the formation of the vortex street downstream. In the present study three cases are investigated which correspond to flow past a square rib in a freestream, flow past a rib on a fixed wall and flow past a rib on a sliding wall. Values of the Reynolds number studied ranged from 100 to 2000, where the Reynolds number is based on the rib height, H, and bulk stream velocity, Ub. Comparisons between the sliding-wall and fixed-wall cases show that the sliding wall has a significant destabilizing effect on the recirculation region behind the rib. Results show the onset of unsteadiness at a lower Reynolds number for the sliding-wall case (50 ≤ Recrit ≤100) than for the fixed-wall case (Recrit≥100). A careful examination of the vortex-shedding process reveals similarities between the sliding-wall case and both the freestream and fixed-wall cases. At moderate Reynolds numbers (Re≥250) the sliding-wall results show that the rib periodically sheds vortices of alternating circulation in much the same manner as the rib in a freestream; as in, for example, Davis and Moore [1982]. The vortices are distributed asymmetrically downstream of the rib and are not of equal strength as in the freestream case. However, the sliding-wall case shows no tendency to develop cycle-to-cycle variations at higher Reynolds numbers, as observed in the freestream and fixed-wall cases. Thus, while the moving wall causes the flow past the rib to become unsteady at a lower Reynolds number than in the fixed-wall case, it also acts to stabilize or “lock-in” the vortex-shedding frequency. This is attributed to the additional source of positive vorticity immediately downstream of the rib on the sliding wall.


1977 ◽  
Vol 99 (3) ◽  
pp. 486-493 ◽  
Author(s):  
O. Gu¨ven ◽  
V. C. Patel ◽  
C. Farell

A simple analytical model for two-dimensional mean flow at very large Reynolds numbers around a circular cylinder with distributed roughness is presented and the results of the theory are compared with experiment. The theory uses the wake-source potential-flow model of Parkinson and Jandali together with an extension to the case of rough-walled circular cylinders of the Stratford-Townsend theory for turbulent boundary-layer separation. In addition, a semi-empirical relation between the base-pressure coefficient and the location of separation is used. Calculation of the boundary-layer development, needed as part of the theory, is accomplished using an integral method, taking into account the influence of surface roughness on the laminar boundary layer and transition as well as on the turbulent boundary layer. Good agreement with experiment is shown by the results of the theory. The significant effects of surface roughness on the mean-pressure distribution on a circular cylinder at large Reynolds numbers and the physical mechanisms giving rise to these effects are demonstrated by the model.


Author(s):  
Michael Heß ◽  
Peter F. Pelz

There is a need to reliably predict the performance (efficiency and total pressure rise) of axial turbomachines from model tests for different load ranges. The commonly used scale-up formulas are not able to reliably predict the performance, especially beyond the design point. Furthermore these formulas do not regard changes in relative roughness as they usually occur in practice. An improved scale-up formula is proposed which achieves not only the reliable scale-up of efficiency, but also the scale-up of the pressure coefficient. It is motivated from measurements on two geometric similar axial model fans with a diameter of 1000 mm respectively 250 mm at different rotational speeds, hence Reynolds numbers. By bonding grains of sand to the impeller the influence of relative roughness was investigated. For applying the formula to different load ranges a factor V is introduced that depends on the quotient of effective flow coefficient to optimal flow coefficient.


Sign in / Sign up

Export Citation Format

Share Document