scholarly journals Recharge Sources and Genetic Model of Geothermal Water in Tangquan, Nanjing, China

2021 ◽  
Vol 13 (8) ◽  
pp. 4449
Author(s):  
Chenghua Xu ◽  
Dandan Yu ◽  
Zujiang Luo

This paper introduces a method to study the origin of geothermal water by analysis of hydrochemistry and isotopes. In addition, the genetic mechanism of geothermal water (GTW) is revealed. The study of the origin of geothermal water is useful for the sustainability of geothermal use. As an example, Tangquan is abundant in GTW resources. Elucidating the recharge sources and formation mechanism of the GTW in this area is vitally important for its scientific development. In this study, the GTW in Tangquan was systematically investigated using hydrochemical and isotopic geochemical analysis methods. The results show the following. The GTW and shallow cold water in the study area differ significantly in their hydrochemical compositions. The geothermal reservoir has a temperature ranging from 63 to 75 °C. The GTW circulates at depths of 1.8–2.3 km. The GTW is recharged by the infiltration of meteoric water at elevations of 321–539 m and has a circulation period of approximately 2046–6474 years. The GTW becomes mixed with the shallow cold karst water at a ratio of approximately 4–26% (cold water) during the upwelling process. In terms of the cause of its formation, the geothermal system in the study area is, according to analysis, of the low-medium-temperature convective type. This geothermal system is predominantly recharged by precipitation that falls in the outcropping carbonate area within the Laoshan complex anticline and is heated by the terrestrial heat flow in the area. The geothermal reservoir is composed primarily of Upper Sinian dolomite formations, and its caprock is made up of Cambrian, Cretaceous, and Quaternary formations. Through deep circulation, the GTW migrates upward along channels formed from the convergence of northeast–east- and north–west-trending faults and is mixed with the shallow cold water, leading to geothermal anomalies in the area.

2021 ◽  
Vol 13 (1) ◽  
pp. 820-834
Author(s):  
Jun Ma ◽  
Zhifang Zhou

Abstract The exploration of the origin of hot spring is the basis of its development and utilization. There are many low-medium temperature hot springs in Nanjing and its surrounding karst landform areas, such as the Tangshan, Tangquan, Lunshan, and Xiangquan hot springs. This article discusses the origin characters of the Lunshan hot spring with geological condition analysis, hydrogeochemical data, and isotope data. The results show that the hot water is SO4–Ca type in Lunshan area, and the cation content of SO4 is high, which are related to the deep hydrogeological conditions of the circulation in the limestone. Carbonate and anhydrite dissolutions occur in the groundwater circulation process, and they also dominate the water–rock interaction processes in the geothermal reservoir of Lunshan. The hot water rising channels are deeply affected by the NW and SN faults. Schematic diagrams of the conceptual model of the geothermal water circulation in Lunshan are plotted. The origin of Tangshan, Tangquan, and Xiangquan hot springs are similar to the Lunshan hot spring. In general, the geothermal water in karst landforms around Nanjing mainly runs through the carbonate rock area and is exposed near the core of the anticlinal structure of karst strata, forming SO4–Ca/SO4–Ca–Mg type hot spring with the water temperature less than 60°C. The characters of the hot springs around Nanjing are similar, which are helpful for the further research, development, and management of the geothermal water resources in this region.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1631
Author(s):  
Fan ◽  
Pang ◽  
Liao ◽  
Tian ◽  
Hao ◽  
...  

The Ganzi geothermal field, located in the eastern sector of the Himalayan geothermal belt, is full of high-temperature surface manifestations. However, the geothermal potential has not been assessed so far. The hydrochemical and gas isotopic characteristics have been investigated in this study to determine the geochemical processes involved in the formation of the geothermal water. On the basis of δ18O and δD values, the geothermal waters originate from snow and glacier melt water. The water chemistry type is dominated by HCO3-Na, which is mainly derived from water-CO2-silicate interactions, as also indicated by the 87Sr/86Sr ratios (0.714098–0.716888). Based on Cl-enthalpy mixing model, the chloride concentration of the deep geothermal fluid is 37 mg/L, which is lower than that of the existing magmatic heat source area. The estimated reservoir temperature ranges from 180–210 °C. Carbon isotope data demonstrate that the CO2 mainly originates from marine limestone metamorphism, with a fraction of 74–86%. The helium isotope ratio is 0.17–0.39 Ra, indicating that the He mainly comes from atmospheric and crustal sources, and no more than 5% comes from a mantle source. According to this evidence, we propose that there is no magmatic heat source below the Ganzi geothermal field, making it a distinctive type of high-temperature geothermal system on the Tibetan Plateau.


2019 ◽  
Vol 98 ◽  
pp. 08005 ◽  
Author(s):  
Yinlei Hao ◽  
Zhonghe Pang ◽  
Tianming Huang ◽  
Yanlong Kong ◽  
Jiao Tian ◽  
...  

Elucidating brine origin and evolution is a fundamental but not easy task especially for coastal geothermal systems with possible marine constituents and multistage evolution, as subsequently physical, chemical and biological alteration processes may mask the original and early-stage signatures. Here chemical and isotopic characteristics of water (D and 18O) and dissolved constituents (13C, 14C, 11B and 87Sr/86Sr) have been utilized to investigate the source and multistage evolution of the Jimo coastal geothermal system in eastern China, with dramatic differences of geochemical characteristics observed within a 0.2 km2 area. Results show that geothermal water is derived from paleo-meteoric water and has undergone a 3-stages evolution that involves: (1) Dissolution of marine halite and potash salts in the deep reservoir; (2) Water-rock reactions especially cation exchange produces a Cl-Na-Ca type water as deep geothermal water upwells along the fault zone; (3) A minor (<0.3%) addition of fossil seawater to the shallow aquifer that produces Cl-Na type waters in the west, whereas sulfide oxidation and dissolution of aluminosilicate and carbonates in the east produces Cl-Na-Ca type waters. The methodology utilized in this study offers a means of examining other similar complex geochemical systems having a multistage evolution.


2018 ◽  
Vol 37 (2) ◽  
pp. 626-645
Author(s):  
Wei Zhang ◽  
Guiling Wang ◽  
Linxiao Xing ◽  
Tingxin Li ◽  
Jiayi Zhao

The geochemical characteristics of geothermically heated water can reveal deep geothermal processes, leading to a better understanding of geothermal system genesis and providing guidance for improved development and utilization of such resources. Hydrochemical and hydrogen oxygen isotope analysis of two geothermal field (district) hot springs based on regional geothermal conditions revealed that the thermal water in the Litang region is primarily of the HCO3Na type. The positive correlations found between F−, Li2+, As+, and Cl− indicated a common origin, and the relatively high Na+ and metaboric acid concentrations suggested a relatively long groundwater recharge time and a slow flow rate. The values of δD and δ18O were well distributed along the local meteoric line, indicating a groundwater recharge essentially driven by precipitation. The thermal reservoir temperature (152°C–195°C) and thermal cycle depth (3156–4070 m) were calculated, and the cold water mixing ratio (60%–68%) was obtained using the silica-enthalpy model. Finally, hydrogeochemical pathway simulation was used to analyze the evolution of geothermal water in the region. The results were further supported by the high metasilicate content in the region. Of the geothermal fields in the region, it was found that the Kahui is primarily affected by albite, calcite precipitation, and silicate, while the Gezha field is primarily affected by calcite dissolution, dolomite precipitation, and silicate.


1990 ◽  
Vol 54 (375) ◽  
pp. 325-333 ◽  
Author(s):  
U. F. Hein ◽  
V. Lüders ◽  
P. Dulski

AbstractThe fluorite vein deposits of the Southern Alps (Northern Italy) exhibit similar geotectonic, paragenetic, and textural characteristics permitting useful comparison between their fluid inclusions and REE systematics. Due to differing post-crystallization deformation, primary fluid inclusions can only be observed in the northernmost deposit (Rabenstein/Corvara). Here, fluorite precipitated from highly saline H2O-NaCl-CaCl2 solutions containing appreciable H2S. During vein formation the fluids changed from low salinity (≈7 wt. % NaCl equiv.) and medium temperature (Th ≈ 230°C), corresponding to the precipitation of early quartz, towards high salinity (≈20 wt.% NaCl equiv.) and lower temperatures (Th ≈170°C during the deposition of late-stage fluorite. This was accompanied by an increase in Ca in solution.REE distribution patterns for the northern deposits are very uniform suggesting a similar source, a large-scale homogeneous fluid system, and fluorite precipitation under reducing conditions. By comparison the southern deposits exhibit contrasting patterns documenting a more complex history, probably due to their remobilization from an earlier mineralization. None of the fluorites shows a ‘primary’ magmatic REE distribution pattern, thereby favouring a genetic model for fluorite mineralization involving the leaching of suitable rock units by formation waters.


Author(s):  
Hejuan Liu ◽  
Qi Li ◽  
Yang Gou ◽  
Liwei Zhang ◽  
Wentao Feng ◽  
...  

The utilization of geothermal energy can reduce CO2 emissions into the atmosphere. The reinjection of cooled return water from a geothermal field by a closed loop system is an important strategy for maintaining the reservoir pressure and prolonging the depletion of the geothermal reservoir by avoiding problems, e.g., water level drawdown, ground subsidence, and thermal pollution. However, the drawdown of water injectivity affected by physical and chemical clogging may occur in sandstone aquifers, and the reservoir temperature may be strongly affected by the reinjection of large amounts of cooled geothermal water, thus resulting in early thermal breakthrough at production wells and a decrease in production efficiency. In addition to the injection of cooled geothermal water, the injection of CO2 can be used to maintain the reservoir pressure and increase the injectivity of the reservoir by enhancing water–rock interactions. However, the thermal breakthrough and cooling effect of the geothermal reservoir may become complex when both CO2 and cooled geothermal water are injected into aquifers. In this paper, a simplified small-scale multilayered geological model is established based on a low-medium geothermal reservoir in Binhai district, Tianjin. The ECO2N module of the TOUGH2MP simulator is used to numerically simulate temperature and pressure responses in the geothermal reservoir while considering different treatment strategies (e.g., injection rates, temperatures, well locations, etc.). The simulation results show that a high injection pressure of CO2 greatly shortens the CO2 and thermal breakthrough at the production well. A much lower CO2 injection pressure is helpful for prolonging hot water production by maintaining the reservoir pressure and eliminating the cooling effect surrounding the production wells. Both pilot-scale and commercial-scale cooled water reinjection rates are considered. When the water production rate is low (2 kg/s), the temperature decrease at the production well is negligible at a distance of 500 m between two wells. However, when both the production and reinjection rates of cooled return water are increased to 100 m3/h, the temperature decrease in the production well exceeds 10 °C after 50 years of operation.


Author(s):  
Rambod Rayegan ◽  
Yong X. Tao

The objective of this paper is to model and analyze the solar Organic Rankine Cycle (ORC) engine for a geothermal air-conditioned net zero-energy building (NZEB) in a hot and humid climate. In the authors’ previous work, 11 fluids have been suggested to be employed in solar ORCs that use low or medium temperature solar collectors. In this paper, the system requirements needed to maintain the electricity demand of a commercial building have been compared for the 11 suggested fluids. The solar collector loop, building, and geothermal air conditioning system are modeled using TRNSYS with the required input for the ORC system derived from the previous study. The commercial building is located in Pensacola of Florida and is served by grid power. The building has been equipped with two geothermal heat pump units and a vertical closed loop system. The performance of the geothermal system has been monitored for 3 weeks. Monitoring data and available electricity bills of the building have been employed to calibrate the building and geothermal air conditioning system simulation. Simulation has been repeated for Miami and Houston in order to evaluate the effect of the different solar radiations on the system requirements.


2018 ◽  
Vol 35 (2) ◽  
pp. 116-141 ◽  
Author(s):  
Erika Almirudis ◽  
Edgar R. Santoyo-Gutiérrez ◽  
Mirna Guevara ◽  
Francisco Paz-Moreno ◽  
Enrique Portugal

A promissory low-to-medium temperature geothermal system located in Sonora (Mexico) has been studied. In the present work, a detailed geochemical survey was carried out to understand the hydrogeochemical signatures of hot spring waters. A field work campaign was conducted for collecting water samples from twelve hot springs placed in four major zones (NW, NE, C, and S). The collected samples were analysed by chemical and isotopic methods for determining their chemical (major and trace elements) and isotopic (18O/16O and D/H) compositions. Using geochemometric analyses of the fluid composition and fractionation, depletion and enrichment processes exhibited by major and trace elements were analysed. Hydrogeochemical classification was used to indicate the presence of sodium-sulphate (Na-SO4) waters in the North (NW and NE) and South hydrothermal zones; whereas calcium-magnesium-bicarbonate (Ca-Mg-HCO3) waters were identified for the Central zone. Some hot spring waters located in the NE zone were also typified as sodium-bicarbonate (Na-HCO3). In relation to the isotopic signatures of 18O/16O and D/H, four water samples from NE and C zones lie near to the global meteoric water line; whereas the remaining eight samples showed a shift for both oxygen and deuterium isotopes. A mixing line with a small shift of δ18O was identified and used as a proxy to discriminate waters with different isotopic signatures. After applying a geochemometric outliers detection/rejection and an iterative ANOVA statistical test, the mean temperature inferred from the most reliable solute geothermometers was 149±40 °C, which suggests to be considered as the minimum value of the reservoir temperature. As most of the hot spring waters fall outside of the full equilibrium curve, the original reservoir conditions were corrected by using a mixing conductive model, which predicted a deep equilibrium temperature of 210±11 °C. As this temperature is considerably higher than the mean temperature inferred from the geothermometers, it was suggested as an optimistic maximum reservoir temperature of the Sonora geothermal system. Using 150 °C and 200 °C as rounded-off reservoir temperatures (or min-max estimates), geochemical equilibria modelling based on fluid-mineral stability diagrams was carried out. An equilibrium process among local hydrothermal waters and albite-potassium feldespar and muscovite-prehnite-laumontite mineral assemblages was found. These minerals were proposed as representative mineral assemblages of low-grade metamorphism, which seems to indicate that the geothermal fluid equilibria were probably reached within the intermediate to acidic volcanic rocks from the Tarahumara Formation.


2021 ◽  
Vol 10 (2) ◽  
pp. 211-229
Author(s):  
Muh Sarkowi ◽  
Rahmat Catur Wibowo ◽  
Regina Febryzha Sawitri ◽  
Bagus Sapto Mulyanto

Research has been conducted using the gravity method in the Wai Selabung area, South Ogan Kemiring Ulu Regency, South Sumatra Province, correlated with geological data, magnetotellurics, and geochemical data. This research aims to get structural patterns, subsurface models and identify the heat source and reservoir areas of the Wai Selabung geothermal system. This study uses the gravity method to model the subsurface, which is correlated with magnetotelluric and geochemical data to identify reservoir prospect areas. The results obtained from this research include residual anomalies in the research area showing the presence of a northwest-southeast trending fault structure by the main fault structure of this area trending northwest-southeast and slightly southwest-northeast. Analysis of the Second Vertical Derivative value of zero indicates the boundaries of the geothermal reservoir in the middle of the research area.  The results of the 3D inversion modeling of the research area show that low density (2 to 2.15 g/cm3) indicates the location of the reservoir, medium-density values (2.2 to 2.4 g/cm3) are tertiary sandstone sedimentary. The high-density distribution value (2.5 to 2.9 g/cm3) indicates a potential heat source. And based on the analysis of the gravity method correlated with geological data, magnetotelluric, and geochemical data, the prospect area for the Wai Selabung geothermal reservoir, is around Teluk Agung, Perekan, and Talang Tebat.


Sign in / Sign up

Export Citation Format

Share Document