scholarly journals Effect of Temperature on Internal Shear Strength Mechanism of Needle-Punched GCL

2021 ◽  
Vol 13 (8) ◽  
pp. 4585
Author(s):  
Yang Yang ◽  
Jianyong Shi ◽  
Xuede Qian

Needle-punched geosynthetic clay liner (NPGCL) has been widely used in landfills. The internal strength of the GCL changes with temperature variation, which affects its application in landfills. A large-scale temperature-controlled direct shear apparatus was developed to study the internal shear strength characteristics of GCL affected by temperature. The internal strength of the GCL was dependent on the bentonite, the fibers, and the interaction between the fibers and the bentonite. The influence of temperature on the internal strength of the GCL was mainly reflected in the displacement at peak strength. However, the peak strength was basically unchanged. The strength of the bentonite and the fibers-reinforced bentonite increased when the temperature increased. The tensile strength of needle-punched fibers decreased with increasing temperature. The peak strength displacement of the fibers-reinforced bentonite decreased with increasing temperature.

2012 ◽  
Vol 706-709 ◽  
pp. 768-773
Author(s):  
Masahiro Nishida ◽  
Koichi Hayashi ◽  
Junichi Nakagawa ◽  
Yoshitaka Ito

The influence of temperature on crater formation and ejecta composition in thick aluminum alloy targets were investigated for impact velocities ranging from approximately 1.5 to 3.5 km/s using a two-stage light-gas gun. The diameter and depth of the crater increased with increasing temperature. The ejecta size at low temperature was slightly smaller than that at high temperature and room temperature. Temperature did not affect the size ratio of ejecta. The scatter diameter of the ejecta at high temperature was slightly smaller than those at low and room temperatures.


Author(s):  
T. Geipel ◽  
W. Mader ◽  
P. Pirouz

Temperature affects both elastic and inelastic scattering of electrons in a crystal. The Debye-Waller factor, B, describes the influence of temperature on the elastic scattering of electrons, whereas the imaginary part of the (complex) atomic form factor, fc = fr + ifi, describes the influence of temperature on the inelastic scattering of electrons (i.e. absorption). In HRTEM simulations, two possible ways to include absorption are: (i) an approximate method in which absorption is described by a phenomenological constant, μ, i.e. fi; - μfr, with the real part of the atomic form factor, fr, obtained from Hartree-Fock calculations, (ii) a more accurate method in which the absorptive components, fi of the atomic form factor are explicitly calculated. In this contribution, the inclusion of both the Debye-Waller factor and absorption on HRTEM images of a (Oll)-oriented GaAs crystal are presented (using the EMS software.Fig. 1 shows the the amplitudes and phases of the dominant 111 beams as a function of the specimen thickness, t, for the cases when μ = 0 (i.e. no absorption, solid line) and μ = 0.1 (with absorption, dashed line).


2021 ◽  
pp. 107754632110026
Author(s):  
Zhou Sun ◽  
Siyu Chen ◽  
Xuan Tao ◽  
Zehua Hu

Under high-speed and heavy-load conditions, the influence of temperature on the gear system is extremely important. Basically, the current work on the effect of temperature mostly considers the flash temperature or the overall temperature field to cause expansion at the meshing point and then affects nonlinear factors such as time-varying meshing stiffness, which lead to the deterioration of the dynamic transmission. This work considers the effect of temperature on the material’s elastic modulus and Poisson’s ratio and relates the temperature to the time-varying meshing stiffness. The effects of temperature on the elastic modulus and Poisson’s ratio are expressed as functions and brought into the improved energy method stiffness calculation formula. Then, the dynamic characteristics of the gear system are analyzed. With the bifurcation diagram, phase, Poincaré, and fast Fourier transform plots of the gear system, the influence of temperature on the nonlinear dynamics of the gear system is discussed. The numerical analysis results show that as the temperature increases, the dynamic response of the system in the middle-speed region gradually changes from periodic motion to chaos.


Author(s):  
Yiqun Huang ◽  
Pawan Singh Takhar ◽  
Juming Tang ◽  
Barry G Swanson

Rheological behaviors of high acyl (HA) gellan are not well understood partially because of its relatively late commercialization compared to low acyl gellan. The objective of this study was to investigate the effect of temperature (5-30 °C), calcium (0, 1 and 10 mM) and gellan concentrations (0.0044-0.1000% w/v) on the flow behaviors of high acyl gellan aqueous solutions using rheological tests. Gellan solutions with 0 or 1 mM added Ca++ exhibited shear thinning behavior at gellan concentrations above 0.0125%. The influence of temperature on apparent viscosity (shear rate, 100 s-1) of gellan solutions can be described with an Arrhenius relationship. The apparent viscosity of gellan solution at low concentrations was more sensitive to temperature changes. The addition of Ca++ led to a decrease in flow resistance for a dilute gellan solution (<0.0125%), but an increased resistance for a relatively concentrated gellan solution (>0.0125%).


Author(s):  
Monika Weiss ◽  
Sven Thatje ◽  
Olaf Heilmayer ◽  
Klaus Anger ◽  
Thomas Brey ◽  
...  

The influence of temperature on larval survival and development was studied in the edible crab, Cancer pagurus, from a population off the island of Helgoland, North Sea. In rearing experiments conducted at six different temperatures (6°, 10°, 14°, 15°, 18° and 24°C), zoeal development was only completed at 14° and 15°C. Instar duration of the Zoea I was negatively correlated with temperature. A model relating larval body mass to temperature and developmental time suggests that successful larval development is possible within a narrow temperature range (14° ± 3°C) only. This temperature optimum coincides with the highest citrate synthase activity found at 14°C. A comparison for intraspecific variability among freshly hatched zoeae from different females (CW 13–17 cm, N = 8) revealed that both body mass and elemental composition varied significantly. Initial larval dry weight ranged from 12.1 to 17.9 μg/individual, the carbon content from 4.6 to 5.8 μg/individual, nitrogen from 1.1 to 1.3 μg/individual, and the C:N ratio from 4.1 to 4.4. A narrow larval temperature tolerance range of C. pagurus as well as the indication of intraspecific variability in female energy allocation into eggs may indicate a potential vulnerability of this species to climate change. Large-scale studies on the ecological and physiological resilience potential of this commercially fished predator are needed.


1997 ◽  
Vol 506 ◽  
Author(s):  
W. J. Cho ◽  
J. O. Lee ◽  
K. S. Chun

ABSTRACTThe hydraulic conductivities in water saturated bentonites at different densities were measured within temperature range of 20 to 80 °C. The results show that the hydraulic conductivities increase with increasing temperature. The hydraulic conductivities of bentonites at the temperature of 80 °C increase up to about 3 times as high as those at 20 °C. The measured values are in good agreement with those predicted. The change in viscosity of water with temperature contributes greatly to increase of hydraulic conductivity.


2021 ◽  
Vol 99 (1) ◽  
pp. 18-23
Author(s):  
Charlie Joe Croxford ◽  
Rajpreet Kaur ◽  
Kultar Singh ◽  
Mandeep Singh Bakshi

Stable colloidal zein nanoparticles (NPs) were synthesized by using controlled precipitation method. They were made fluorescence active by incorporating a small amount of fluorescence quinolinium surfactant. The incorporation of fluorescence surfactant provided both the colloidal stability and the fluorescence ability to determine the phase transition in zein NPs under the effect of temperature variation. Maintaining colloidal stability under the effect of temperature variation is an essential aspect of zein NPs applicability as a source of vegetarian protein supplement in different food suspensions. Different techniques such as fluorescence, DLS size, zeta potential, and FTIR measurements were applied to determine the influence of temperature on the colloidal stability of zein NPs. Zein NPs undergo phase transition well above room temperature while maintaining their size in nanometer range, and the phase transition temperature decreased with the amount of zein used in the synthesis of zein NPs. The results highlighted the potential use of zein NPs as a vegetarian supplement protein in different food products.


1970 ◽  
Vol 15 ◽  
pp. 41-46 ◽  
Author(s):  
MM Rahman ◽  
W Islam ◽  
KN Ahmed

Xylocoris flavipes (Reuter) is one of the dominant predators of many stored product insect pest including Cryptolestes pusillus. The influence of temperature on predator development, survival and some selected life history parameters was determined. Eggs laid/female (27.27±2.52) and egg hatching rate (%) (88.25±2.19) were highest at 30°C and lowest at 20°C (5.43±1.19 and 30.79±4.63%) respectively but no eggs laid at 15°C. Mortality among immature stages (%) was highest (51.71±1.48) at 35°C and lowest (24.25c±1.14) at 25°C. Developmental times decreasing with the increasing of temperature. Maximum numbers of progeny/female/day (3.55±0.76) were produced at 25°C and minimum (0.83±0.04) were at 20°C.The sex ratios (% female) of X. flavipes were 47.04, 56.68, 51.66 and 50.07 for 20, 25, 30 and 35°C respectively. Survivorship of ovipositing females was highest at 25°C but lowest at 35°C respectively. Key words: Xylocoris flavipes, Cryptolestes pusillus, life history, temperature, developmental time   doi: 10.3329/jbs.v15i0.2201 J. bio-sci. 15: 41-46, 2007


2014 ◽  
Vol 1052 ◽  
pp. 137-142
Author(s):  
Jun Jie Sheng ◽  
Yu Qing Zhang ◽  
Shu Yong Li ◽  
Hua Ling Chen

Temperature can significantly affect the performance of a viscoelastic dielectric elastomer (DE). In the current study, we use a thermodynamic model to characterize the influence of temperature on the viscoelastic electromechanical response undergoing a constant electric load by taking into account the temperature dependent elastic modus and dielectric constant. Due to the significant viscoelasticity in the dielectric elastomer, DE membrane creeps in time and the inelastic stretch of DE is smaller than that of the total stretch. The results show that the total stretch of the viscoelastic electromechanical deformation increases with the increasing temperature until suffering electromechanical instability at a high temperature; the actuation performance is dominated by the moduli of the elastomer. This may be used to guide the design of dielectric elastomer actuators undergoing temperature variation.


e-Polymers ◽  
2014 ◽  
Vol 14 (5) ◽  
pp. 323-333 ◽  
Author(s):  
Soghra Ramazani ◽  
Mohammad Karimi

AbstractThe present work shows the effect of temperature on successfully obtained uniform electrospun poly-(ε-caprolactone) (PCL) fibers, with specific attention to the molecular orientation and diameter of nanofibers. Experiments were performed at temperatures (T) of 25°, 35°, and 45°C, and at PCL concentrations (w) of 12, 16, and 20 wt.%. Scanning electron microscopy provided the morphology of electrospun fibers and quantified their diameters. Elevated temperature for all PCL concentrations yielded a viscosity that allows for easier stretching of the jet to obtain a smaller diameter for fibers. A minimum size of the fiber diameter (close to 100 nm) was achieved for the set point T=45°C and w=12 and 16 wt.%. Due to the easy stretching of the jet by controlling the elastic property of the solution, a dichroic ratio of 1.62 was accessible for the set point T=35°C and w=12 wt.% from polarized Fourier transform infrared spectra as a factor for the orientation of PCL chains.


Sign in / Sign up

Export Citation Format

Share Document