scholarly journals Physiological and Biochemical Responses of Invasive Species Cenchrus pauciflorus Benth to Drought Stress

2021 ◽  
Vol 13 (11) ◽  
pp. 5976
Author(s):  
Liye Zhou ◽  
Xun Tian ◽  
Beimi Cui ◽  
Adil Hussain

The invasive plant Cenchrus pauciflorus Benth exhibits strong adaptability to stress, especially drought. When newly introduced certain plant species can become invasive and quickly spread in an area due to lack of competition, potentially disturbing the ecological balance and species diversity. C. pauciflorus has been known to cause huge economic losses to agriculture and animal husbandry. Thus, understanding the physiological responses of C. pauciflorus to drought stress could help explore the role of C. pauciflorus in population expansion in sandy land environments. In this study, we evaluated the response of C. pauciflorus to induced low, moderate, and severe drought stress conditions. Results showed a linear reduction in the fresh weight (FW), dry weight (DW), and relative water content (RWC) of the aboveground parts of C. pauciflorus following drought stress as compared to the control plants (no drought stress). Chemical analyses showed that the drought treatments significantly induced the production of proline, soluble proteins, soluble sugars, MDA, and free amino acids as compared to the control treatment (no drought stress). On the other hand, the starch content was significantly reduced in drought-treated plants. This was also accompanied by a significant linear increase in the antioxidant enzyme activities (SOD, POD, and CAT) in plants subjected to drought stress. On the basis of physiological and biochemical analyses, we propose that C. pauciflorus has evolved to survive harsh drought stress conditions of the desert via sophisticated biochemical adjustment and antioxidant reprograming that allows protection against damage caused by drought stress.

2018 ◽  
Vol 47 (2) ◽  
pp. 352-358 ◽  
Author(s):  
Sevinç KIRAN

Vermicompost can play an effective and important role in plant growth and development and also in reducing harmful effects of various environmental stresses on plants. The vermicompost fertilizer application was evaluated for the growth, physiological and biochemical parameters of lettuce (Lactuca sativa var. crispa) plants under drought stress conditions. Tests were carried out at different levels of vermicompost (0, 2.5 and 5%) and drought stress [no stress, moderate drought, and severe drought at 100, 50 and 25% of field capacity]. In comparison to control (vermicompost at 0%), lettuce plants treated with vermicompost at 2.5 or 5%  had higher shoot height, shoot fresh weight, relative water content, stomatal conductance, chlorophyll a, chlorophyll b , total chlorophyll and carotenoid contents under moderate and severe drought stress conditions. Malondialdehyde (MDA) content and superoxide dismutase (SOD) and catalase (CAT) activities increased while plants under drought stress conditions. Application of vermicompost caused higher SOD and CAT enzyme activities and lower MDA content under drought stress. Enhancement in antioxidant enzyme activities as a result of vermicompost destroyed reactive oxygen species. Therefore, application of vermicompost under moderate and severe drought stress decreased MDA content in lettuce plant cells. Data indicated a positive effect of the vermicompost on the growth of lettuce under drought stress conditions.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 588
Author(s):  
Solmaz Najafi ◽  
Hossein Nazari Nasi ◽  
Ruveyde Tuncturk ◽  
Murat Tuncturk ◽  
Riyaz Z. Sayyed ◽  
...  

The effects of mycorrhiza, Thiobacillus and Nitroxin (Azotobacter and Azospirillum sp.) biofertilizers under drought stress conditions with four levels of field capacity (FC) (control(100%), 85%, 70%, and 50%) on the antioxidant enzyme activities of medicinal pumpkin (Cucurbita pepo convar. pepo var. Styriaca) were evaluated during the years 2018–2019. Irrigation levels exhibited significant effects on all studied variables, except for the catalase (CAT) enzyme. A significant correlation was observed between the effects of irrigation levels and biofertilizers on antioxidant enzymes, soluble protein content, and grain yield. The highest activity of catalase and ascorbate peroxidase (APX) enzymes was achieved using mycorrhiza in 50% FC. Increasing drought intensity and mycorrhiza stimulated glutathione reductase (GR) and guaiacol peroxidase (GPX) activities by 32% and 66%, while Nitroxin increased them by 16% and 43%, respectively. Under severe drought stress conditions, only mycorrhiza exhibited a positive effect on GR and GPX enzymes. Under moderate and severe drought stress conditions, Nitroxin increased grain yield by 13% and 12.6%, respectively. The irrigation regimes and bio-fertilizers had a significant effect on β-sitosterol percentage. The highest amount was observed at the highest level of drought stress. Among the various bio-fertilizers treatments, the application of Thiobacillus yielded the highest percentage of β-sitosterol. The results of the present study demonstrate that the application of biofertilizers is beneficial in coping with drought stress.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259585
Author(s):  
Gull Mehak ◽  
Nudrat Aisha Akram ◽  
Muhammad Ashraf ◽  
Prashant Kaushik ◽  
Mohamed A. El-Sheikh ◽  
...  

Optimum water availability at different growth stages is one the major prerequisites of best growth and yield production of plants. Exogenous application of plant growth regulators considered effective for normal functioning of plants under water-deficit conditions. A study was conducted to examine the influence of exogenously applied L-methionine on sunflower (Helianthus annuus L.) plants grown under water-deficit conditions. Twenty-five-day old seedlings of four sunflower cultivars, FH331, FH572, FH652 and FH623 were exposed to control (100% F.C.) and drought stress (60% F.C.) conditions. After 30-day of drought stress, L-methionine (Met; 20 mg/L) was applied as a foliar spray to control and drought stressed plants. Water deficit stress significantly reduced shoot fresh and dry weights shoot and root lengths, and chlorophyll a content in all four cultivars. While a significant increase was observed due to water deficiency in relative membrane permeability (RMP), malondialdehyde (MDA), total soluble proteins (TSP), total soluble sugars (TSS), ascorbic acid (AsA) and activity of peroxidase (POD). Although, exogenously applied Met was effective in decreasing RMP, MDA and H2O2 contents, it increased the shoot fresh weight, shoot length, chlorophyll a, chlorophyll a/b ratio, proline contents and the activities of SOD, POD and CAT enzymes in all four cultivars under water deficit stress. No change in AsA and total phenolics was observed due to foliar-applied Met under water stress conditions. Of all sunflower cultivars, cv. FH-572 was the highest and cv. FH-652 the lowest of all four cultivars in shoot fresh and dry weights as well as shoot length under drought stress conditions. Overall, foliar applied L-methionine was effective in improving the drought stress tolerance of sunflower plants that was found to be positively associated with Met induced improved growth attributes and reduced RMP, MDA and H2O2 contents under water deficit conditions.


2019 ◽  
Vol 10 (2) ◽  
pp. 106-114
Author(s):  
Farahnaz A. Norodinvand ◽  
Davoud K. Dehkordi ◽  
Aslan Egdernezhad

Background: Deficit irrigation is an optimum technique for producing products under drought stress conditions. The superabsorbent hydrogel is a hydrophilic polymer with cross-linked 3-D hydrophilic nets that are able to take up and keep noteworthy values of water and aquatic liquids. Recently published patents have provided significant information about the superabsorbent application in agriculture. Objective: The aim of this study was to investigate the superabsorbent effect on the yield and some of the growth factors of Pisum sativum L. under drought stress conditions. Methods: The experimental factors included: irrigation treatments at two levels of 100% and 75% water requirement by the plant. The second factor included the levels of superabsorbent application which included three levels of control treatment, potting soil with a weight percentage of 0.5 and 1. The third factor was the location of the superabsorbent application. Results: According to the results, the largest root length value corresponded to I2S1U treatment plan, the largest root dry weight value corresponded to I1S2U treatment plan, the largest plant dry weight corresponded to I2S1U treatment plan, the largest grain dry weight corresponded to I2S1U treatment plan, the largest number of grains per pod corresponded to I2S2U treatment plan and the largest number of pods per plant corresponded to I2S1U treatment plan which were significant at 5% level. Conclusion: It was concluded that the presence of the superabsorbent at the lower end of the pot was effective in providing water and nutrients for the plant root.


2014 ◽  
Vol 34 (7) ◽  
pp. 778-786 ◽  
Author(s):  
V. Granda ◽  
C. Delatorre ◽  
C. Cuesta ◽  
M. L. Centeno ◽  
B. Fernandez ◽  
...  

2018 ◽  
Vol 30 (1) ◽  
pp. 155-167 ◽  
Author(s):  
Rozita Kabiri ◽  
Ali Hatami ◽  
Hakimeh Oloumi ◽  
Mehdi Naghizadeh ◽  
Fatemeh Nasibi ◽  
...  

Abstract Melatonin, as an indoleamine molecule, regulates a wide range of physiological functions during the growth, morphogenesis and response of plants to biotic and abiotic stresses. In this research, the effect of exogenous application of melatonin (0 (distilled water), 50, 100 and 150 µM) to the leaves of Moldavian balm plants grown under different levels of drought stress (100% (control), 80%, 60% and 40% of field water capacity) was investigated. The results indicate that plants which were treated with 100 µM melatonin showed the greatest leaf surface area, lateral branching, flower length and activities of antioxidant enzymes (superoxide dismutase, guaiacol peroxidase and ascorbate peroxidase). Foliar application of 100 µM melatonin had no significant difference in catalase activity in comparison with the control and other concentrations of melatonin under normal, moderate and severe drought stress conditions. The lowest H2O2 content and lipid peroxidation (electrolyte leakage, concentrations of malondialdehyde and other aldehydes) were obtained at the concentration of 100 µM melatonin under severe drought stress. This concentration also significantly increased the chlorophyll content and enhanced the relative water content; however, foliar application of 100 µM melatonin had no significant effect on leaf length and proline content compared with the control under normal and stress conditions. The obtained results suggested that foliar application of 100 µM melatonin was more effective than the concentrations of 50 and 150 µM melatonin in reducing the adverse effects of moderate and severe drought stress.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 435
Author(s):  
El-Sayed M. Desoky ◽  
Eman Selem ◽  
Mohamed F. Abo El-Maati ◽  
Asem A. S. A. Hassn ◽  
Hussein E. E. Belal ◽  
...  

A field trial was conducted twice (in 2020 and 2021) to evaluate the effect of clove fruit extract (CFE) and/or salicylic acid (SA), which were used as a foliar nourishment, on growth and yield traits, as well as physiological and biochemical indices utilizing potato (Solanum tuberosum L.) plants irrigated with deficient regimes in an arid environment. Three drip irrigation regimes [e.g., well watering (7400 m3 ha−1), moderate drought (6200 m3 ha−1), and severe drought (5000 m3 ha−1)] were designed for this study. The tested growth, yield, and photosynthetic traits, along with the relative water content, were negatively affected, whereas markers of oxidative stress (hydrogen peroxide and superoxide), electrolyte leakage, and peroxidation of membrane lipids (assessed as malondialdehyde level) were augmented along with increased antioxidative defense activities under drought stress. These effects were gradually increased with the gradual reduction in the irrigation regime. However, under drought stress, CFE and/or SA significantly enhanced growth characteristics (fresh and dry weight of plant shoot and plant leaf area) and yield components (average tuber weight, number of plant tubers, and total tuber yield). In addition, photosynthetic attributes (chlorophylls and carotenoids contents, net photosynthetic and transpiration rates, and stomatal conductance) were also improved, and defensive antioxidant components (glutathione, free proline, ascorbate, soluble sugars, and α-tocopherol levels, and activities of glutathione reductase, peroxidase, superoxide dismutase, catalase, and ascorbate peroxidase) were further enhanced. The study findings advocate the idea of using a CFE + SA combined treatment, which was largely efficient in ameliorating potato plant growth and productivity by attenuating the limiting influences of drought stress in dry environments.


2018 ◽  
Vol 111 (2) ◽  
pp. 463 ◽  
Author(s):  
Ghader HABIBI

<p><span style="font-family: Times New Roman;"><span style="font-size: medium;">In this study, the biomass, compatible solutes, PSII functioning and phenolic profiles of <em>Aloe vera</em> (<a title="Carl Linnaeus" href="https://en.wikipedia.org/wiki/Carl_Linnaeus">L.</a>) <a title="" href="https://en.wikipedia.org/wiki/Nicolaas_Laurens_Burman">Burm.f.</a> leaves were investigated at different time intervals after drought stress (20, 40 and 80 % of the field capacity). While the impaired ability of leaves for synthesis of assimilates caused growth inhibition in <em>A. vera</em> under severe drought stress, we observed that the content of proline, soluble sugars, total phenolic and flavonoids tended to increase in plants treated with mild drought stress. Under mild drought stress, the increased leaf thickness correlated with the higher productivity in terms of leaf biomass and gel production. Also, mild drought stress enhanced photochemical activity in <em>Aloe</em> leaves,<strong> </strong>and<strong> </strong>changed the entire quantity of secondary metabolite of vanillic acid produced, which may be considered to obtain better growth and considerable secondary metabolite of the medicinal <em>Aloe</em> plants treated with mild drought stress.</span></span></p>


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1502
Author(s):  
Makoena Joyce Moloi ◽  
Rouxlene van der Merwe

Severe drought stress affects the production of vegetable-type soybean (Glycine max L. Merrill), which is in infancy for Africa despite its huge nutritional benefits. This study was conducted under controlled environmental conditions to establish the effects of severe drought stress on ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR) activities as well as proline, total soluble sugars (TSS), and hydrogen peroxide (H2O2) contents of five vegetable-type soybean cultivars (UVE8, UVE14, UVE17, AGS354, AGS429) at flowering and pod-filling stages. Drought induced significant increases in the contents of proline (selectively at pod filling for AGS429), TSS (at both stages for AGS429, and only at pod filling for UVE14), and malondialdehyde (AGS354 at flowering; UVE17 at pod filling). UVE8 and AGS354 had the highest H2O2 levels at flowering under drought stress, while AGS429 had the lowest. However, AGS429 was the only cultivar with significantly increased H2O2 under drought stress. Furthermore, drought stress induced significant increases in APX, GPX, and GR activities at flowering for AGS429. AGS354 recorded the highest decline for all antioxidative enzymes, while UVE17 decreased for GPX only. All biochemical parameters, except H2O2, were significantly higher at pod filling than at the flowering stage. The relationship between H2O2 and total seed mass (TSMP) or total seed per plant (TSP) was significantly positive for both stages, while that of TSS (at flowering) and proline (at pod filling) were significantly related to total pods per plant (TPP). The study suggests that during drought, the tolerance responses of vegetable-type soybean, APX, GPX, and GR (especially at the flowering stage), function in concert to minimize H2O2 production and lipid peroxidation, thereby allowing H2O2 to function in the signaling events leading to the induction of drought tolerance. The induction of TSS at flowering and proline at pod filling is important in the drought tolerance response of this crop.


Author(s):  
Jaagriti Tyagi ◽  
Neeraj Shrivastava ◽  
A. K. Sharma ◽  
Ajit Varma ◽  
Ramesh Namdeo Pudake

Under abiotic stress conditions, arbuscular mycorrhizal (AM) fungi help plants by improving nutrient and water uptake. Finger millet is an arid crop having soils with poor water holding capacity. Therefore, it is difficult for the plants to obtain water and mineral nutrients from the soil to sustain life. To understand the role of mycorrhizal symbiosis in water and mineral up-take from the soil, we studied the role of Rhizophagus intraradices colonization and its beneficial role for drought stress tolerance in finger millet seedling. Under severe drought stress condition, AM inoculation led to the significant increase in plant growth (7%), phosphorus, and chlorophyll content (29%). Also, the level of osmolytes including proline and soluble sugars were found in higher quantities in AM inoculated seedlings under drought stress. Under water stress, the lipid peroxidation in leaves of mycorrhized seedlings was reduced by 29%. The flavonoid content of roots in AM colonized seedlings was found 16% higher compared to the control, whereas the leaves were accumulated more phenol. Compared to the control, ascorbate level was found to be 25% higher in leaf tissue of AM inoculated seedlings. Moreover, glutathione (GSH) level was increased in mycorrhiza inoculated seedlings with a maximum increment of 182% under severe stress. The results demonstrated that AM provided drought tolerance to the finger millet seedlings through a stronger root system, greater photosynthetic efficiency, a more efficient antioxidant system and improved osmoregulation.


Sign in / Sign up

Export Citation Format

Share Document