scholarly journals Effects of mild and severe drought stress on the biomass, phenolic compounds production and photochemical activity of Aloe vera (L.) Burm.f.

2018 ◽  
Vol 111 (2) ◽  
pp. 463 ◽  
Author(s):  
Ghader HABIBI

<p><span style="font-family: Times New Roman;"><span style="font-size: medium;">In this study, the biomass, compatible solutes, PSII functioning and phenolic profiles of <em>Aloe vera</em> (<a title="Carl Linnaeus" href="https://en.wikipedia.org/wiki/Carl_Linnaeus">L.</a>) <a title="" href="https://en.wikipedia.org/wiki/Nicolaas_Laurens_Burman">Burm.f.</a> leaves were investigated at different time intervals after drought stress (20, 40 and 80 % of the field capacity). While the impaired ability of leaves for synthesis of assimilates caused growth inhibition in <em>A. vera</em> under severe drought stress, we observed that the content of proline, soluble sugars, total phenolic and flavonoids tended to increase in plants treated with mild drought stress. Under mild drought stress, the increased leaf thickness correlated with the higher productivity in terms of leaf biomass and gel production. Also, mild drought stress enhanced photochemical activity in <em>Aloe</em> leaves,<strong> </strong>and<strong> </strong>changed the entire quantity of secondary metabolite of vanillic acid produced, which may be considered to obtain better growth and considerable secondary metabolite of the medicinal <em>Aloe</em> plants treated with mild drought stress.</span></span></p>

2021 ◽  
Vol 12 ◽  
Author(s):  
Marziyeh Jafari ◽  
Alireza Shahsavar

Plant secondary metabolites are compounds that play an important role in plant interactions and defense. Persian lime and Mexican lime as the two most important sour lime varieties with high levels of secondary metabolites, are widely cultivated in tropical and subtropical areas. Melatonin is a pleiotropic molecule that plays a key role in protecting plants against drought stress through regulating the secondary metabolite biosynthesis pathway. This study was performed as a factorial experiment consisting of three factors in a completely randomized design (CRD), including four concentrations of melatonin (0, 50, 100, and 150 μM), three levels of drought stress [100% (control), 75% (moderate stress), and 40% (severe stress) field capacity (FC)], and two Citrus cultivars. The experiment was conducted for 60 days in a greenhouse condition. Based on the results of this study under severe drought stress, melatonin-treated crops had higher total flavonoid and total phenolic contents than the untreated crops. The highest level of essential oils components was observed on 100 μM foliar application of melatonin under severe drought stress in both varieties. The main component of the essential oil was limonene in both Citrus species. Moreover, based on the analysis of the results, hesperidin was the main polyphenol in both varieties. Since the use of melatonin often increases the production of secondary metabolites, this study can be considered as a very effective method for controlling the adverse effects of drought stress in citrus for both industrial and horticultural aims.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiaxing Wang ◽  
Haoqiang Zhang ◽  
Jing Gao ◽  
Yu Zhang ◽  
Yaqin Liu ◽  
...  

Abstract Background A better understanding of non-structural carbohydrate (NSC) dynamics in trees under drought stress is critical to elucidate the mechanisms underlying forest decline and tree mortality from extended periods of drought. This study aimed to assess the contribution of ectomycorrhizal (ECM) fungus (Suillus variegatus) to hydraulic function and NSC in roots, stems, and leaves of Pinus tabulaeformis subjected to different water deficit intensity. We performed a continuous controlled drought pot experiment from July 10 to September 10, 2019 using P. tabulaeformis seedlings under 80, 40, and 20% of the field moisture capacity that represented the absence of non-drought, moderate drought, and severe drought stress, respectively. Results Results indicated that S. variegatus decreased the mortality rate and increased height, root biomass, and leaf biomass of P. tabulaeformis seedlings under moderate and severe drought stress. Meanwhile, the photosynthetic rates, stomatal conductance, and transpiration rates of P. tabulaeformis were significantly increased after S. variegatus inoculation. Moreover, the inoculation of S. variegatus also significantly increased the NSC concentrations of all seedling tissues, enhanced the soluble sugars content, and increased the ratios of soluble sugars to starch on all tissues under severe drought. Overall, the inoculation of S. variegatus has great potential for improving the hydraulic function, increasing the NSC storage, and improving the growth of P. tabulaeformis under severe drought. Conclusions Therefore, the S. variegatus can be used as a potential application strain for ecological restoration on arid regions of the Loess Plateau, especially in the P. tabulaeformis woodlands.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuhang Liu ◽  
Zhongqun He ◽  
Yongdong Xie ◽  
Lihong Su ◽  
Ruijie Zhang ◽  
...  

AbstractPhedimus aizoon L. is a drought-resistant Chinese herbal medicine and vegetable. However, its drought tolerant limit and the mechanism of drought tolerance are unknown, which restricts the promotion of water-saving cultivation of Phedimus aizoon L. in arid areas. To solve the above problem, we carried out a 30-day-long drought stress experiment in pots that presented different soil water contents and were divided into four groups: control check, 75–80% of the maximum water-holding capacity (MWHC); mild drought, 55–60%; moderate drought, 40–45%; and severe drought, 20–25%. The dynamic changes in both plant physiological indexes from 10 to 30 days and leaf anatomical structure on the 30th day of stress were recorded. The results show that Phedimus aizoon L. grew normally under mild drought stress for 30 days, but the growth of the plants became inhibited after 20 days of severe drought and after 30 days of moderate drought. At the same time, Phedimus aizoon L. physiologically responded to cope with drought stress: the growth of the root system accelerated, the waxy layer of the leaves thickened, and the dark reactions of the plants transformed from those of the C3 cycle to CAM. The activity of antioxidant enzymes (SOD, POD and CAT) continuously increased to alleviate the damage caused by drought stress. To ensure the relative stability of the osmotic potential, the contents of osmoregulatory substances such as proline, soluble sugars, soluble protein and trehalose increased correspondingly. Although Phedimus aizoon L. has strong drought stress resistance, our experimental results show that the soil available water content should not be less than 27% during cultivation.


2020 ◽  
Author(s):  
Yuhang Liu ◽  
Zhongqun He ◽  
Yongdong Xie ◽  
Lihong Su ◽  
Ruijie Zhang ◽  
...  

Abstract A pot experiment was conducted to investigate the growth, physiological changes and mechanism of drought resistance of Phedimus aizoon L. under different levels of water content .CK: 75% ~ 80% of the MWHC (maximum water holding capacity), Mild drought: 55% ~ 60%, Moderate drought: 40% ~ 45%, Severe drought: 20% ~ 25%.We observed that the plants grew normally in the first two treatments, even the mild drought promoted the growth of the roots. In the last two treatments, drought stress had a significant negative effect on plant growth, at the same time, Phedimus aizoon L. also made positive physiological response to cope with the drought: The aboveground part of the plant (leaf, plant height, stem diameter) was smaller, the waxy layer of the leaves was thickened, the stomata of the leaves were closed during the day, and only a few stomata were opened at night, which proved that the dark reaction cycle metabolism mode of the plant was transformed from C3 cycle to CAM pathway. The activity of antioxidant enzymes (SOD, POD and CAT) was continuously increased to alleviate the damage caused by drought. To ensure the relative stability of osmotic potential, the contents of osmoregulation substances such as proline, soluble sugar, soluble protein and trehalose increased correspondingly. But plants have limited regulatory power, with aggravation of drought stress degree and extension of stress time, the MDA content and electrolyte leakage of leaves increased continuously. Observed under electron microscope,the morphology of chloroplast and mitochondria changed and the membrane structure was destroyed. The plant's photosynthetic and respiratory mechanisms are destroyed and the plant gradually die.


2015 ◽  
Vol 140 (4) ◽  
pp. 323-332 ◽  
Author(s):  
Li-Juan Zhang ◽  
Tian-Xiu Zhong ◽  
Li-Xin Xu ◽  
Lie-bao Han ◽  
Xunzhong Zhang

Soil water deficit impacts cold acclimation and freezing tolerance in creeping bentgrass (Agrostis stolonifera L.), but the mechanisms underlying have not been well understood. The objectives of this study were to investigate the effects of deficit irrigation before and during cold acclimation on osmoprotectants, antioxidant metabolism, and freezing tolerance in creeping bentgrass. The grass was subjected to three-soil moisture levels: well-watered [100% container capacity (CC)], deficit irrigation induced-mild drought stress (60% CC), and severe drought stress (30% CC) for 35 days including 14 days at 24/20 °C (day/night) and then 21 days under cold acclimation treatment (2 °C) in growth chambers. Leaf proline and total soluble sugar (TSS) levels were higher in the grass under mild drought stress relative to that under severe drought stress. Superoxide (O2−·), hydrogen peroxide (H2O2), and malondialdehyde (MDA) content were higher in the grass under severe drought relative to that under well-watered and mild drought stress at day 35. Mild drought stress increased catalase (CAT) and guaiacol peroxidase (POD) activity, induced new isoforms and increased band intensities of superoxide dismutase (SOD), CAT, and POD during cold acclimation (days 14 to 35). No differences in osmoprotectants, antioxidant metabolism, and freezing tolerance were found between mild drought and well-watered treatments. The results of this study suggest deficit irrigation-induced mild drought stress in late fall and winter could induce accumulation of osmoprotectants and improve antioxidant metabolism, and freezing tolerance, but severe drought stress could reduce freezing tolerance of creeping bentgrass in the region with limited precipitation.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 435
Author(s):  
El-Sayed M. Desoky ◽  
Eman Selem ◽  
Mohamed F. Abo El-Maati ◽  
Asem A. S. A. Hassn ◽  
Hussein E. E. Belal ◽  
...  

A field trial was conducted twice (in 2020 and 2021) to evaluate the effect of clove fruit extract (CFE) and/or salicylic acid (SA), which were used as a foliar nourishment, on growth and yield traits, as well as physiological and biochemical indices utilizing potato (Solanum tuberosum L.) plants irrigated with deficient regimes in an arid environment. Three drip irrigation regimes [e.g., well watering (7400 m3 ha−1), moderate drought (6200 m3 ha−1), and severe drought (5000 m3 ha−1)] were designed for this study. The tested growth, yield, and photosynthetic traits, along with the relative water content, were negatively affected, whereas markers of oxidative stress (hydrogen peroxide and superoxide), electrolyte leakage, and peroxidation of membrane lipids (assessed as malondialdehyde level) were augmented along with increased antioxidative defense activities under drought stress. These effects were gradually increased with the gradual reduction in the irrigation regime. However, under drought stress, CFE and/or SA significantly enhanced growth characteristics (fresh and dry weight of plant shoot and plant leaf area) and yield components (average tuber weight, number of plant tubers, and total tuber yield). In addition, photosynthetic attributes (chlorophylls and carotenoids contents, net photosynthetic and transpiration rates, and stomatal conductance) were also improved, and defensive antioxidant components (glutathione, free proline, ascorbate, soluble sugars, and α-tocopherol levels, and activities of glutathione reductase, peroxidase, superoxide dismutase, catalase, and ascorbate peroxidase) were further enhanced. The study findings advocate the idea of using a CFE + SA combined treatment, which was largely efficient in ameliorating potato plant growth and productivity by attenuating the limiting influences of drought stress in dry environments.


2019 ◽  
Vol 20 (23) ◽  
pp. 6064 ◽  
Author(s):  
Czyczyło-Mysza ◽  
Cyganek ◽  
Dziurka ◽  
Quarrie ◽  
Skrzypek ◽  
...  

A doubled haploid population of 94 lines from the Chinese Spring × SQ1 wheat cross (CSDH) was used to evaluate additive and epistatic gene action effects on total phenolic content, grain yield of the main stem, grain number per plant, thousand grain weight, and dry weight per plant at harvest based on phenotypic and genotypic observations of CSDH lines. These traits were evaluated under moderate and severe drought stress and compared with well-watered plants. Plants were grown in pots in an open-sided greenhouse. Genetic parameters, such as additive and epistatic effects, affecting total phenolic content, were estimated for eight year-by-drought combinations. Twenty-one markers showed a significant additive effect on total phenolic content in all eight year-by-drought combinations. These markers were located on chromosomes: 1A, 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4A, and 4D. A region on 4AL with a stable QTL controlling the phenolic content, confirmed by various statistical methods is particularly noteworthy. In all years and treatments, three markers significantly linked to QTLs have been identified for both phenols and yield. Thirteen markers were coincident with candidate genes. Our results indicated the importance of both additive and epistatic gene effects on total phenolic content in eight year-by-drought combinations.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 511
Author(s):  
Ioana M. Plesa ◽  
Mohamad Al Hassan ◽  
Sara González-Orenga ◽  
Adriana F. Sestras ◽  
Oscar Vicente ◽  
...  

European larch (Larix decidua Mill.) has been reported either as more tolerant or as more sensitive to drought than conifers with perennial leaves. Previous studies have revealed that Carpathian populations of European larch display a high genetic variability. A comparative study of the responses of these populations to drought stress at the seedling stage might allow the identification of drought tolerant genotypes and reliable drought stress biomarkers, which could be eventually used for the early detection of drought effects in larch, not only under control greenhouse conditions, but also in their natural stands. Growth responses were analyzed in larch seedlings from six Romanian Carpathian populations, submitted to one month of mild drought stress under controlled conditions. Levels of photosynthetic pigments (chlorophylls a and b, and carotenoids), osmolytes (proline and total soluble sugars), monovalent cations (Na+ and K+), and malondialdehyde (MDA) and non-enzymatic antioxidants (total phenolics and flavonoids) were compared with control treatments and between populations. Growth and the pattern of the biochemical responses were very similar in the six populations. Drought stress lead to stem length decrease in all population, whereas reduction of fresh weight of needles was significant only in one population (BVVC), and reduction of water content of needles in two populations (BVVC and GuHo). The optimal biochemical traits for an early detection of drought symptoms in this species is the increase—in most populations—of total soluble sugars, MDA, and total phenolic compounds, whereas K+ reduction was significant in all populations. Photosynthetic pigments remained unchanged, except for the Anin population where they were reduced under stress. Multivariate principal component and hierarchical clustering analyses confirmed the impact of drought in the growth and physiology of European larch, and revealed that the humidity of the substrate was positively correlated with the growth parameters and the levels of K+ in needles, and negatively correlated with the levels of MDA, total soluble sugars, total phenolic compounds, and flavonoids in needles.


2020 ◽  
Vol 40 (9) ◽  
pp. 1147-1164
Author(s):  
Roman Gebauer ◽  
Roman Plichta ◽  
Josef Urban ◽  
Daniel Volařík ◽  
Martina Hájíčková

Abstract Spring drought is becoming a frequently occurring stress factor in temperate forests. However, the understanding of tree resistance and resilience to the spring drought remains insufficient. In this study, European beech (Fagus sylvatica L.) seedlings at the early stage of leaf development were moderately and severely drought stressed for 1 month and then subjected to a 2-week recovery period after rewatering. The study aimed to disentangle the complex relationships between leaf gas exchange, vascular anatomy, tree morphology and patterns of biomass allocation. Stomatal conductance decreased by 80 and 85% upon moderate and severe drought stress, respectively, which brought about a decline in net photosynthesis. However, drought did not affect the indices of slow chlorophyll fluorescence, indicating no permanent damage to the light part of the photosynthetic apparatus. Stem hydraulic conductivity decreased by more than 92% at both drought levels. Consequently, the cambial activity of stressed seedlings declined, which led to lower stem biomass, reduced tree ring width and a lower number of vessels in the current tree ring, these latter also with smaller dimensions. In contrast, the petiole structure was not affected, but at the cost of reduced leaf biomass. Root biomass was reduced only by severe drought. After rewatering, the recovery of gas exchange and regrowth of the current tree ring were observed, all delayed by several days and by lower magnitudes in severely stressed seedlings. The reduced stem hydraulic conductivity inhibited the recovery of gas exchange, but xylem function started to recover by regrowth and refilling of embolized vessels. Despite the damage to conductive xylem, no mortality occurred. These results suggest the low resistance but high resilience of European beech to spring drought. Nevertheless, beech resilience could be weakened if the period between drought events is short, as the recovery of severely stressed seedlings took longer than 14 days.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1502
Author(s):  
Makoena Joyce Moloi ◽  
Rouxlene van der Merwe

Severe drought stress affects the production of vegetable-type soybean (Glycine max L. Merrill), which is in infancy for Africa despite its huge nutritional benefits. This study was conducted under controlled environmental conditions to establish the effects of severe drought stress on ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR) activities as well as proline, total soluble sugars (TSS), and hydrogen peroxide (H2O2) contents of five vegetable-type soybean cultivars (UVE8, UVE14, UVE17, AGS354, AGS429) at flowering and pod-filling stages. Drought induced significant increases in the contents of proline (selectively at pod filling for AGS429), TSS (at both stages for AGS429, and only at pod filling for UVE14), and malondialdehyde (AGS354 at flowering; UVE17 at pod filling). UVE8 and AGS354 had the highest H2O2 levels at flowering under drought stress, while AGS429 had the lowest. However, AGS429 was the only cultivar with significantly increased H2O2 under drought stress. Furthermore, drought stress induced significant increases in APX, GPX, and GR activities at flowering for AGS429. AGS354 recorded the highest decline for all antioxidative enzymes, while UVE17 decreased for GPX only. All biochemical parameters, except H2O2, were significantly higher at pod filling than at the flowering stage. The relationship between H2O2 and total seed mass (TSMP) or total seed per plant (TSP) was significantly positive for both stages, while that of TSS (at flowering) and proline (at pod filling) were significantly related to total pods per plant (TPP). The study suggests that during drought, the tolerance responses of vegetable-type soybean, APX, GPX, and GR (especially at the flowering stage), function in concert to minimize H2O2 production and lipid peroxidation, thereby allowing H2O2 to function in the signaling events leading to the induction of drought tolerance. The induction of TSS at flowering and proline at pod filling is important in the drought tolerance response of this crop.


Sign in / Sign up

Export Citation Format

Share Document