scholarly journals Sustainable Agriculture: Nutritional Benefits of Wheat–Soybean and Maize–Sunflower Associations for Hibernation and Reproduction of Endangered Common Hamsters

2021 ◽  
Vol 13 (24) ◽  
pp. 13521
Author(s):  
Mathilde Louise Tissier ◽  
Florian Kletty ◽  
Jean-Patrice Robin ◽  
Caroline Habold

Farmland species face many threats, including habitat loss and malnutrition during key periods of their life cycle. This is aggravated in conventionally managed monocultures, leading to nutrient deficiencies that impair the survival and reproduction of farmland wildlife. For instance, protein deficiencies in wheat or vitamin B3 deficiency in maize reduce by up to 87% the reproductive success of the critically endangered common hamster (Cricetus cricetus), a flagship species of European farmlands. It is urgent to identify and implement agricultural practices that can overcome these deficiencies and help restoring hamsters’ reproductive success. As part of a conservation program to diversify farming habitats in collaboration with farmers, we tested whether associations between wheat or maize and three supplemental crops (soybean, sunflower and fodder radish) supported hamsters’ performance during hibernation and reproduction. We observed that maize–sunflower, maize–radish and wheat–soybean associations minimized hamsters’ body mass loss during hibernation. The wheat–soybean association led to the highest reproductive success (N = 2 litters of 4.5 ± 0.7 pups with a 100% survival rate to weaning), followed by maize–sunflower and maize–radish. These crop associations offer promising opportunities to overcome nutritional deficiencies caused by cereal monocultures. Their agronomic potential should promote their implementation on a large scale and benefit farmland biodiversity beyond the common hamster.

2017 ◽  
Vol 284 (1847) ◽  
pp. 20162168 ◽  
Author(s):  
Mathilde L. Tissier ◽  
Yves Handrich ◽  
Odeline Dallongeville ◽  
Jean-Patrice Robin ◽  
Caroline Habold

From 1735 to 1940, maize-based diets led to the death of hundreds of thousands of people from pellagra, a complex disease caused by tryptophan and vitamin B3 deficiencies. The current cereal monoculture trend restricts farmland animals to similarly monotonous diets. However, few studies have distinguished the effects of crop nutritional properties on the reproduction of these species from those of other detrimental factors such as pesticide toxicity or agricultural ploughing. This study shows that maize-based diets cause high rates of maternal infanticides in the European hamster, a farmland species on the verge of extinction in Western Europe. Vitamin B3 supplementation is shown to effectively restore reproductive success in maize-fed females. This study pinpoints how nutritional deficiencies caused by maize monoculture could affect farmland animal reproduction and hence their fitness.


2020 ◽  
Vol 100 (6) ◽  
pp. 569-579
Author(s):  
Maurice J. J. La Haye ◽  
Ruud J. M. van Kats ◽  
Gerard J. D. M. Müskens ◽  
Caspar A. Hallmann ◽  
Eelke Jongejans

AbstractEuropean populations of Common hamster (Cricetus cricetus) have dramatically declined in the last decades, and in many EU countries, the species is on the brink of extinction. In the Netherlands, a research and reintroduction program was started in three areas with hamster-friendly management to reverse the decline of the species. Since 2002, more than 800 captive-bred and wild-born hamsters were monitored using implant radiotransmitters to quantify survival rates and discover the main causes of death after release compared to those of wild individuals. Individuals with a transmitter were regularly checked at their burrow. Predation by foxes, birds of prey, and small mustelids was the most important cause of mortality of this medium-sized rodent, while crop type and harvest regime were also likely to be important drivers as they influenced survival rates through the presence or absence of protective cover. The fitted weekly survival model showed that male hamsters had much lower survival rates during the active season than females, which corresponds with the ‘risky male hypothesis’. Survival rates of females appeared too low to keep populations at a stable level. To establish a viable population, more optimal environmental conditions for both survival and reproduction of the hamsters are necessary. Using electric fences around fields with hamsters significantly increased the survival of females. However, hamster conservationists need to consider not just subadult and adult survival rates, but also habitat connectivity, weather effects on reproduction, and alternative agricultural practices on a landscape scale.


1996 ◽  
Vol 33 (4-5) ◽  
pp. 39-44
Author(s):  
J. Holas ◽  
M. Konvicková

Potential environmental impacts as a result of large-scale farming system in the Czech Republic have created a great deal of concern in recent years. This concern has led to several studies to identify the role of new regulations, directives and other legislative issues in the field of water pollution control. The set of legislative tools related to watershed management policy to promote better agricultural practices is shortly reviewed. The paper emphasises the running water law system amendment with respect to European community water quality regulations.


2021 ◽  
Vol 13 (4) ◽  
pp. 1781
Author(s):  
Gaurav Chugh ◽  
Kadambot H. M. Siddique ◽  
Zakaria M. Solaiman

Nanobiotechnology in agriculture is a driver for modern-day smart, efficient agricultural practices. Nanoparticles have been shown to stimulate plant growth and disease resistance. The goal of sustainable farming can be accomplished by developing and sustainably exploiting the fruits of nanobiotechnology to balance the advantages nanotechnology provides in tackling environmental challenges. This review aims to advance our understanding of nanobiotechnology in relevant areas, encourage interactions within the research community for broader application, and benefit society through innovation to realize sustainable agricultural practices. This review critically evaluates what is and is not known in the domain of nano-enabled agriculture. It provides a holistic view of the role of nanobiotechnology in multiple facets of agriculture, from the synthesis of nanoparticles to controlled and targeted delivery, uptake, translocation, recognition, interaction with plant cells, and the toxicity potential of nanoparticle complexes when presented to plant cells.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4487
Author(s):  
Sundus M. Sallabi ◽  
Aishah Alhmoudi ◽  
Manal Alshekaili ◽  
Iltaf Shah

Water-soluble B vitamins participate in numerous crucial metabolic reactions and are critical for maintaining our health. Vitamin B deficiencies cause many different types of diseases, such as dementia, anaemia, cardiovascular disease, neural tube defects, Crohn’s disease, celiac disease, and HIV. Vitamin B3 deficiency is linked to pellagra and cancer, while niacin (or nicotinic acid) lowers low-density lipoprotein (LDL) and triglycerides in the blood and increases high-density lipoprotein (HDL). A highly sensitive and robust liquid chromatography–tandem mass spectroscopy (LC/MS-MS) method was developed to detect and quantify a vitamin B3 vitamer (nicotinamide) and vitamin B6 vitamers (pyridoxial 5′-phosphate (PLP), pyridoxal hydrochloride (PL), pyridoxamine dihydrochloride (PM), pridoxamine-5′-phosphate (PMP), and pyridoxine hydrochloride (PN)) in human hair samples of the UAE population. Forty students’ volunteers took part in the study and donated their hair samples. The analytes were extracted and then separated using a reversed-phase Poroshell EC-C18 column, eluted using two mobile phases, and quantified using LC/MS-MS system. The method was validated in human hair using parameters such as linearity, intra- and inter-day accuracy, and precision and recovery. The method was then used to detect vitamin B3 and B6 vitamers in the human hair samples. Of all the vitamin B3 and B6 vitamers tested, only nicotinamide was detected and quantified in human hair. Of the 40 samples analysed, 12 were in the range 100–200 pg/mg, 15 in the range 200–500 pg/mg, 9 in the range of 500–4000 pg/mg. The LC/MS-MS method is effective, sensitive, and robust for the detection of vitamin B3 and its vitamer nicotinamide in human hair samples. This developed hair test can be used in clinical examination to complement blood and urine tests for the long-term deficiency, detection, and quantification of nicotinamide.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Anirban Nath ◽  
Sourav Samanta ◽  
Saon Banerjee ◽  
Anamitra Anurag Danda ◽  
Sugata Hazra

AbstractThe paper through a critical appraisal of the agricultural practices in the Indian Sundarban deltaic region explores the tripartite problems of arsenic biomagnification, salinity of arable lands and ingress of agrochemical pollutants into the freshwater resources, which endanger the health, livelihood and food security of the rural population inhabiting the delta. The threefold problem has rendered a severe blow to the agrarian economy consequently triggering large-scale outmigration of the rural population from the region. Although recent studies have addressed these issues separately, the inter-connectivity among these elements and their possible long-term impact upon sustainability in the Sundarbans are yet to be elucidated. In the current scenario, the study emphasizes that the depleting freshwater resources is at the heart of the threefold problems affecting the Sundarbans. Owing to the heavy siltation of the local river systems, freshwater resources from the local ravines have salinized beyond the point of being used for agricultural purposes. At the same time, increasing salinity levels resulting from fluctuation of pre- and post-monsoon rainfall, frequent cyclones and capillary movement of salinized groundwater (primarily during the Rabi season) have severely hampered the agricultural practices. Salinization of above groundwater reserves has forced the farmers toward utilization of groundwater, which are lifted using STWs, especially for rice and other cultivations in the Rabi season. The Holocene aquifers of the region retain toxic levels of arsenic which are lifted during the irrigation process and are deposited on to the agricultural fields, resulting in bioaccumulation of As in the food products resourced from the area. The compound effect of consuming arsenic-contaminated food and drinking water has resulted in severe health issues recorded among the local population in the delta. Furthermore, due to the sub-optimal conditions for sustaining agriculture under saline stress, farmers often opt for the cultivation of post-green revolution high-yielding varieties, which require additional inputs of nitrogen-based fertilizers, organophosphate herbicides and pesticides that are frequently washed away by runoff from the watershed into the low-lying catchment areas of the biosphere reserve. Such practices have endangered the vulnerable conditions of local flora and fauna. In the present situation, the study proposes mitigation strategies which necessitate the smart use of locally obtainable resources like water, adaptable cultivars and sustainable agronomic practices like organic farming. The study also suggests engaging of conventional plant breeding strategies such as “Evolutionary plant breeding” for obtaining cultivars adapted to the shifting ecological conditions of the delta in the long run.


Author(s):  
Hildegarde Vandenhove

The accident at the Fukushima Daiichi Nuclear Power Plant has raised questions about the accumulation of radionuclides in soils, the transfer in the foodchain and the possibility of continued restricted future land use. This paper summarizes what is generally understood about the application of agricultural countermeasures as a land management option to reduce the radionuclides transfer in the food chain and to facilitate the return of potentially affected soils to agricultural practices in areas impacted by a nuclear accident.


2018 ◽  
Vol 115 (43) ◽  
pp. 10836-10844 ◽  
Author(s):  
Bruce N. Ames

It is proposed that proteins/enzymes be classified into two classes according to their essentiality for immediate survival/reproduction and their function in long-term health: that is, survival proteins versus longevity proteins. As proposed by the triage theory, a modest deficiency of one of the nutrients/cofactors triggers a built-in rationing mechanism that favors the proteins needed for immediate survival and reproduction (survival proteins) while sacrificing those needed to protect against future damage (longevity proteins). Impairment of the function of longevity proteins results in an insidious acceleration of the risk of diseases associated with aging. I also propose that nutrients required for the function of longevity proteins constitute a class of vitamins that are here named “longevity vitamins.” I suggest that many such nutrients play a dual role for both survival and longevity. The evidence for classifying taurine as a conditional vitamin, and the following 10 compounds as putative longevity vitamins, is reviewed: the fungal antioxidant ergothioneine; the bacterial metabolites pyrroloquinoline quinone (PQQ) and queuine; and the plant antioxidant carotenoids lutein, zeaxanthin, lycopene, α- and β-carotene, β-cryptoxanthin, and the marine carotenoid astaxanthin. Because nutrient deficiencies are highly prevalent in the United States (and elsewhere), appropriate supplementation and/or an improved diet could reduce much of the consequent risk of chronic disease and premature aging.


2021 ◽  
Author(s):  
Matthew Wolfe ◽  
Da Huo ◽  
Henry Ruiz-Guzman ◽  
Brody Teare ◽  
Tyler Adams ◽  
...  

Abstract AimsMany governments and companies have committed to moving to net-zero emissions by 2030 or 2050 to tackle climate change, which require the development of new carbon capture and sequestration/storage (CCS) techniques. A proposed method of sequestration is to deposit carbon in soils as plant matter including root mass and root exudates. Adding perennial traits such as rhizomes to crops as part of a sequestration strategy would result in annual crop regrowth from rhizome meristems rather than requiring replanting from seeds which would in turn encourage no-till agricultural practices. Integrating these traits into productive agriculture requires a belowground phenotyping method compatible with high throughput breeding and selection methods (i.e., is rapid, inexpensive, reliable, and non-invasive), however none currently exist. MethodsGround penetrating radar (GPR) is a non-invasive subsurface sensing technology that shows potential as a phenotyping technique. In this study, a prototype GPR antenna array was used to scan roots of the perennial sorghum hybrid, PSH09TX15. A-scan level time-domain analyses and B-scan level time/frequency analyses using the continuous wavelet transform were utilized to extract features of interest from the acquired radargrams. ResultsOf six A-scan diagnostic indices examined, the standard deviation of signal amplitude correlated most significantly with belowground biomass. Time frequency analysis using the continuous wavelet transform yielded high correlations of B-scan features with belowground biomass. ConclusionThese results demonstrate that continued refinement of GPR data analysis workflows should yield a highly applicable phenotyping tool for breeding efforts in environments where selection is otherwise impractical on a large scale.


Sign in / Sign up

Export Citation Format

Share Document