scholarly journals A Periodic Assessment System for Urban Safety and Security Considering Multiple Hazards Based on WebGIS

2021 ◽  
Vol 13 (24) ◽  
pp. 13993
Author(s):  
Xuexi Chen ◽  
Guohua Chen ◽  
Qin Yang ◽  
Jialing Li ◽  
Zhi Yuan ◽  
...  

With the frequent occurrence of various disasters and accidents, realizing the periodic assessment and visualization of urban safety and security considering multiple hazards is of great significance for safe urban development. In this paper, a periodic assessment system is developed for urban safety and security considering multiple hazards, based on WebGIS. This system consists of an assessment module, a visualization module, and an assistant module that integrates the assessment model to process the assessment data quickly and realizes the visualization of a thematic map and data statistics for rationalizing assessment results. The assessment of a typical urban area was carried out to prove that the created system can effectively conduct periodic assessments and support single-hazard and multi-hazard analysis and auxiliary decision-making. This system can be applied to the grid management and periodic assessment of urban areas at different levels, with high expansibility and application value. It can also help to promote the sustainable construction of a safe and smart city.

2021 ◽  
Vol 13 (12) ◽  
pp. 6560
Author(s):  
Guohua Chen ◽  
Qin Yang ◽  
Xuexi Chen ◽  
Kongxing Huang ◽  
Tao Zeng ◽  
...  

With the expansion of urbanization, the interaction between different hazards has become increasing evident. In order to promote sustainable development of urban areas, it is particularly important to systematically analyze and evaluate urban safety and security under the coupling effect of multi-hazard risks. In response to the practical needs of urban safety and security assessment practice, this paper constructs an application-oriented urban safety and security quantitative assessment methodology. First, following the comprehensive risk management perspective, the logical relationship between urban safety and security elements is analyzed. It proposes “comprehensive screening, key analysis, and comprehensive evaluation” as a new assessment concept. Second, a system of urban safety and security assessment methods consisting of a weighting method and a function model is constructed. The function model includes two sub-models: a quantitative risk assessment model that considers triggering effects and a quantitative assessment model of emergency capacity that considers the evolution of emergencies. Finally, the method was applied to a coastal urban area in south China. The case study proved that the proposed method system can not only effectively evaluate various disaster risks and emergency capacity but also provide evidence for the formulation and implementation of urban safety and security management measures.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 920 ◽  
Author(s):  
Kiyong Park ◽  
Man-Hyung Lee

As a city develops and expands, it is likely confronted with a variety of environmental problems. Although the impact of climate change on people has continuously increased in the past, great numbers of natural disasters in urban areas have become varied in terms of form. Among these urban disasters, urban flooding is the most frequent type, and this study focuses on urban flooding. In cities, the population and major facilities are concentrated, and to examine flooding issues in these urban areas, different levels of flooding risk are classified on 100 m × 100 m geographic grids to maximize the spatial efficiency during the flooding events and to minimize the following flooding damage. In this analysis, vulnerability and exposure tests are adopted to analyze urban flooding risks. The first method is based on land-use planning, and the building-to-land ratio. Using fuzzy approaches, the tests focus on risks. However, the latter method using the HEC-Ras model examines factors such as topology and precipitation volume. By mapping the classification of land-use and flooding, the risk of urban flooding is evaluated by grade-scales: green, yellow, orange, and red zones. There are two key findings and theoretical contributions of this study. First, the areas with a high flood risk are mainly restricted to central commercial areas where the main urban functions are concentrated. Additionally, the development density and urbanization are relatively high in these areas, in addition to the old center of urban areas. In the case of Changwon City, Euichang-gu and Seongsan-gu have increased the flood risk because of the high property value of commercial areas and high building density in these regions. Thus, land-use planning of these districts should be designed to reflect upon the different levels of flood risks, in addition to the preparation of anti-disaster facilities to mitigate flood damages in high flood risk areas. Urban flood risk analysis for individual land use districts would facilitate urban planners and managers to prioritize the areas with a high flood risk and to prepare responding preventive measures for more efficient flood management.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 420
Author(s):  
Zening Wu ◽  
Yuhai Cui ◽  
Yuan Guo

With the progression of climate change, the intensity and frequency of extreme rainfall have increased in many parts of the world, while the continuous acceleration of urbanization has made cities more vulnerable to floods. In order to effectively estimate and assess the risks brought by flood disasters, this paper proposes a regional flood disaster risk assessment model combining emergy theory and the cloud model. The emergy theory can measure many kinds of hazardous factor and convert them into unified solar emergy (sej) for quantification. The cloud model can transform the uncertainty in flood risk assessment into certainty in an appropriate way, making the urban flood risk assessment more accurate and effective. In this study, the flood risk assessment model combines the advantages of the two research methods to establish a natural and social dual flood risk assessment system. Based on this, the risk assessment system of the flood hazard cloud model is established. This model was used in a flood disaster risk assessment, and the risk level was divided into five levels: very low risk, low risk, medium risk, high risk, and very high risk. Flood hazard risk results were obtained by using the entropy weight method and fuzzy transformation method. As an example for the application of this model, this paper focuses on the Anyang region which has a typical continental monsoon climate. The results show that the Anyang region has a serious flood disaster threat. Within this region, Linzhou County and Anyang County have very high levels of risk for flood disaster, while Hua County, Neihuang County, Wenfeng District and Beiguan District have high levels of risk for flood disaster. These areas are the core urban areas and the economic center of local administrative regions, with 70% of the industrial clusters being situated in these regions. Only with the coordinated development of regional flood control planning, economy, and population, and reductions in the uncertainty of existing flood control and drainage facilities can the sustainable, healthy and stable development of the region be maintained.


2021 ◽  
Vol 13 (5) ◽  
pp. 2678
Author(s):  
Nicolas Brusselaers ◽  
Koen Mommens ◽  
Cathy Macharis

The urban built environment concentrates due to the growing urbanization trend, triggering construction and renovation works in urban areas. Although construction works often revitalize cities upon completion, the associated logistics activities engender a significant financial and environmental footprint if not handled appropriately. Cities have the largest potential to reduce negative impacts through requirements on construction logistics. However, today, there is a lack of knowledge within cities on how to set such demands and how to involve and manage the numerous and varying stakeholders in these processes. This paper presents a participatory decision-making framework for the governance of urban construction logistics on economic, environmental and societal levels, building further on the Multi-Actor Multi-Criteria Analysis (MAMCA). The framework was then implemented on a use case in the dense urban Brussels-Capital Region (Belgium), gathering a wide variety of stakeholders in the context of a sustainable Construction Logistics Scenario (CLS) evaluation. Special attention was paid on the identification of implementation barriers and the role of governments to facilitate the introduction and city-wide roll-out of novel CLS. Findings show how different processes are site-, actor- and condition-specific, thereby delivering a common built object which is often based on different motivations and concerns. The study proposes a flexible, replicable and upscalable framework both from an inter- and intracity perspective, which can serve to support (1) the management of processes and CLS, (2) the management of people and the community, and (3) the project and city, in the context of multi-level governance.


2009 ◽  
Vol 9 (3) ◽  
pp. 751-766 ◽  
Author(s):  
A. M. Youssef ◽  
B. Pradhan ◽  
A. F. D. Gaber ◽  
M. F. Buchroithner

Abstract. Geomophological hazard assessment is an important component of natural hazard risk assessment. This paper presents GIS-based geomorphological hazard mapping in the Red Sea area between Safaga and Quseir, Egypt. This includes the integration of published geological, geomorphological, and other data into GIS, and generation of new map products, combining governmental concerns and legal restrictions. Detailed geomorphological hazard maps for flooding zones and earth movement potential, especially along the roads and railways, have been prepared. Further the paper illustrates the application of vulnerability maps dealing with the effect of hazard on urban areas, tourist villages, industrial facilities, quarries, and road networks. These maps can help to initiate appropriate measures to mitigate the probable hazards in the area.


2012 ◽  
Vol 204-208 ◽  
pp. 3457-3461
Author(s):  
Tian Qi Li ◽  
Fei Geng

In order to study the probability of occurrence of secondary fire after the earthquake in urban areas, the probability model of the hazard analysis that the fire occurred and the spread is established and applied. Probability models need to consider the destruction level of buildings under earthquake excitation as well as the probability of the leakage and diffusion of combustible material in the buildings in the corresponding destruction level, combination of weather, season, housing density and other factors to determine the probability of the single building earthquake secondary fire. On this basis , the natural administrative areas in the city as a unit , considering the factors of regional hazard analysis such as population density , property distribution and density within a region , to calculate the hazard indicator and determine the high hazard areas of secondary fire in the city. The Geographic Information System was used as the platform, to division of urban earthquake secondary fire high-hazard areas.


2015 ◽  
Vol 3 (8) ◽  
pp. 4967-5013 ◽  
Author(s):  
H. Apel ◽  
O. M. Trepat ◽  
N. N. Hung ◽  
D. T. Chinh ◽  
B. Merz ◽  
...  

Abstract. Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas, and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either fluvial or pluvial flood hazard, studies of combined fluvial and pluvial flood hazard are hardly available. Thus this study aims at the analysis of fluvial and pluvial flood hazard individually, but also at developing a method for the analysis of combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as example. In this tropical environment the annual monsoon triggered floods of the Mekong River can coincide with heavy local convective precipitation events causing both fluvial and pluvial flooding at the same time. Fluvial flood hazard was estimated with a copula based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. Pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data, and a stochastic rain storm generator. Inundation was simulated by a 2-dimensional hydrodynamic model implemented on a Graphical Processor Unit (GPU) for time-efficient flood propagation modelling. All hazards – fluvial, pluvial and combined – were accompanied by an uncertainty estimation considering the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and ways for their usage in flood risk management are outlined.


2009 ◽  
pp. 102-136
Author(s):  
Manila Bonciani

- This contribution lies in the opening between the interest of social research for a deeper understanding of phenomena tied to the quality of life, and the need to intervene in public health as well as identify priority areas of action for the promotion of peoples' health and quality of life. The pilot study carried out in Rome in fact aimed to test a survey instrument on the quality of life from a health perspective. It analyzed the interaction between the environmental dimension, the social-economical and the psychosociological ones and their impact on the quality of life of people who live in urban areas. The purpose of this first contribution is to consider what might influence the promotion of wellbeing, in relation to different levels of human action (macro, meso and micro). The results underline a prominent influence of the psycho-sociological dimension on the perception of individual quality of life and a less substantial influence of the socio-economical one. The absence of a relation with the macro factor, which ecological data of the Municipalities of Rome characterizes as an element of urbanization of the territory, needs further investigation. This can be obtained through a sample survey that guarantees the representativeness of the Roman population.


2020 ◽  
Vol 12 (12) ◽  
pp. 5059
Author(s):  
Xinzheng Lu ◽  
Donglian Gu ◽  
Zhen Xu ◽  
Chen Xiong ◽  
Yuan Tian

To improve the ability to prepare for and adapt to potential hazards in a city, efforts are being invested in evaluating the performance of the built environment under multiple hazard conditions. An integrated physics-based multi-hazard simulation framework covering both individual buildings and urban areas can help improve analysis efficiency and is significant for urban planning and emergency management activities. Therefore, a city information model-powered multi-hazard simulation framework is proposed considering three types of hazards (i.e., earthquake, fire, and wind hazards). The proposed framework consists of three modules: (1) data transformation, (2) physics-based hazard analysis, and (3) high-fidelity visualization. Three advantages are highlighted: (1) the database with multi-scale models is capable of meeting the various demands of stakeholders, (2) hazard analyses are all based on physics-based models, leading to rational and scientific simulations, and (3) high-fidelity visualization can help non-professional users better understand the disaster scenario. A case study of the Tsinghua University campus is performed. The results indicate the proposed framework is a practical method for multi-hazard simulations of both individual buildings and urban areas and has great potential in helping stakeholders to assess and recognize the risks faced by important buildings or the whole city.


Land ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 69 ◽  
Author(s):  
Kaiyuan Li ◽  
Xiaolong Jin ◽  
Danxun Ma ◽  
Penghui Jiang

The evaluation of resource and environmental carrying capacity (RECC) is the foundation for the rationale behind the arrangement of land spaces for production, living, and ecological uses. In this study, based on various natural, economic, and social factors, an integrated Multi-Factor assessment model was developed to evaluate the RECC of Xinbei district of Changzhou. Meanwhile, we also calculated the population carrying capacity estimation model restricted by food security. The study comprehensively analyzed the current status and land resource characteristics of a rapid urbanization area and the RECC restrictions for protection and development. The results indicate that the comprehensive carrying capacity of Xinbei showed distinct spatial heterogeneity, with a decreasing trend from the riverside protection area to urban areas, then to mountain areas. Combined with the secure food supply provided by future land resources, it was estimated that the population carrying index of Xinbei would be as high as 1.25 and 1.22 in 2035 and 2050, respectively, indicating that both years would experience a population overload. Therefore, an urgent adjustment to the structure and layout of territorial space and resources of the Xinbei District is necessary.


Sign in / Sign up

Export Citation Format

Share Document