scholarly journals A Model Free Adaptive Scheme for Integrated Control of Civil Aircraft Trajectory and Attitude

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 347
Author(s):  
Gaoyang Jiang ◽  
Genfeng Liu ◽  
Hansong Yu

The adaptive trajectory and attitude control is essential for the four-dimensional (4D) trajectory operation of civil aircraft in symmetric thrust flight. In this work, an integrated trajectory and attitude control scheme is proposed based on the =multi-input multi-output (MIMO) model free adaptive control (MFAC) method. First, the full-form dynamic linearization technique is adopted to build the equivalent data model of aircraft. Also, the MIMO MFAC scheme with saturation constraint is designed to achieve an accurate tracking control for a given 4D trajectory and attitude. Besides, the performance limitations of aircraft are taken into consideration, and the MIMO MFAC scheme with hard constraints is designed. In addition, to improve the simulation efficiency, a control scheme with mixed constraints, i.e., saturation and hard constraints, is further proposed. It can be seen from the simulation results that the proposed method can perform an integrated control of the aircraft 4D trajectory and attitude without precise modeling, and the control performance is better than that of the model-based control method in terms of flight altitude and yaw angle control. The integrated data-driven control scheme proposed in this paper provides a theoretical solution for the precise operation of aircraft under 4D trajectory.

2012 ◽  
Vol 263-266 ◽  
pp. 584-587
Author(s):  
Xu Guang Hou ◽  
Jian Yan ◽  
Jin Jin ◽  
Shun Liang Mei

Aiming at a three-axis stabilized microsatellite, a novel attitude control method, called magnetorquer based vertical damping, is proposed to avoid the occurrence of the worst situation that the non-solar-battery-plane spins towards the sun. DSP based simulation results based on DSP show that the vertical damping method outperforms the simple damping method when no orbit information is available, simultaneously the whole attitude control scheme is simple and effective. The proposed solution guarantees a stable power supply from the electrical source even under the extreme situation, which improves the reliability of the whole microsatellite system.


2017 ◽  
Vol 40 (7) ◽  
pp. 2116-2128 ◽  
Author(s):  
Zheng Wang ◽  
Jianping Yuan ◽  
Yong Shi ◽  
Dejia Che

This paper develops an attitude takeover control structure for post-capture non-cooperative targets with actuator nonlinearities and faults. In this paper, the contingent actuator gain faults, deviation faults and the undesirable non-symmetric dead-zone nonlinearities of the actuator are all under consideration. An effective robust adaptive fault tolerant attitude control method is synthesized such that the actuator nonlinearities and faults can be well handled. As a result, the accurate attitude stabilization and tracking are maintained. Moreover, an extended fault tolerant attitude control scheme that can work well in the presence of inaccurate measurement information is proposed. Based on a quadratic Lyapunov function, the proof of the convergence is completed. Simulation results demonstrate the effectiveness and advantages of the proposed method.


2019 ◽  
Vol 14 ◽  
Author(s):  
Tayyab Khan ◽  
Karan Singh ◽  
Kamlesh C. Purohit

Background: With the growing popularity of various group communication applications such as file transfer, multimedia events, distance learning, email distribution, multiparty video conferencing and teleconferencing, multicasting seems to be a useful tool for efficient multipoint data distribution. An efficient communication technique depends on the various parameters like processing speed, buffer storage, and amount of data flow between the nodes. If data exceeds beyond the capacity of a link or node, then it introduces congestion in the network. A series of multicast congestion control algorithms have been developed, but due to the heterogeneous network environment, these approaches do not respond nor reduce congestion quickly whenever network behavior changes. Objective: Multicasting is a robust and efficient one-to-many (1: M) group transmission (communication) technique to reduced communication cost, bandwidth consumption, processing time and delays with similar reliability (dependability) as of regular unicast. This patent presents a novel and comprehensive congestion control method known as integrated multicast congestion control approach (ICMA) to reduce packet loss. Methods: The proposed mechanism is based on leave-join and flow control mechanism along with proportional integrated and derivate (PID) controller to reduce packet loss, depending on the congestion status. In the proposed approach, Proportional integrated and derivate controller computes expected incoming rate at each router and feedback this rate to upstream routers of the multicast network to stabilize their local buffer occupancy. Results: Simulation results on NS-2 exhibit the immense performance of the proposed approach in terms of delay, throughput, bandwidth utilization, and packet loss than other existing methods. Conclusion: The proposed congestion control scheme provides better bandwidth utilization and throughput than other existing approaches. Moreover, we have discussed existing congestion control schemes with their research gaps. In the future, we are planning to explore the fairness and quality of service issue in multicast communication.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199399
Author(s):  
Xiaoguang Li ◽  
Bi Zhang ◽  
Daohui Zhang ◽  
Xingang Zhao ◽  
Jianda Han

Shape memory alloy (SMA) has been utilized as the material of smart actuators due to the miniaturization and lightweight. However, the nonlinearity and hysteresis of SMA material seriously affect the precise control. In this article, a novel disturbance compensation-based adaptive control scheme is developed to improve the control performance of SMA actuator system. Firstly, the nominal model is constructed based on the physical process. Next, an estimator is developed to online update not only the unmeasured system states but also the total disturbance. Then, the novel adaptive controller, which is composed of the nominal control law and the compensation control law, is designed. Finally, the proposed scheme is evaluated in the SMA experimental setup. The comparison results have demonstrated that the proposed control method can track reference trajectory accurately, reject load variations and stochastic disturbances timely, and exhibit satisfactory robust stability. The proposed control scheme is system independent and has some potential in other types of SMA-actuated systems.


Author(s):  
Na Dong ◽  
Wenjin Lv ◽  
Shuo Zhu ◽  
Donghui Li

Model-free adaptive control has been developed greatly since it was proposed. Up to now, model-free adaptive control theory has become mature and tends to be an effective solution for complex unmodeled industrial systems. In practical industrial processes, most control systems are inevitably accompanied by noise that will result in indelible error and may further cause inaccurate feedback to the output. In order to solve this kind of problem with model-free technique, this article incorporates an improved tracking differentiator into model-free adaptive control. After that, the anti-noise model-free adaptive control method with complete convergence analysis is proposed. Meanwhile, numerical simulation proves that the improved control method can quickly track a given signal with good resistance to noise interference. Finally, the effectiveness and practicability of the proposed algorithm are verified by experiments through the control of drum water level of circulating fluidized.


Author(s):  
Matteo Facchino ◽  
Atsushi Totsuka ◽  
Elisa Capello ◽  
Satoshi Satoh ◽  
Giorgio Guglieri ◽  
...  

AbstractIn the last years, Control Moment Gyros (CMGs) are widely used for high-speed attitude control, since they are able to generate larger torque compared to “classical” actuation systems, such as Reaction Wheels . This paper describes the attitude control problem of a spacecraft, using a Model Predictive Control method. The features of the considered linear MPC are: (i) a virtual reference, to guarantee input constraints satisfaction, and (ii) an integrator state as a servo compensator, to reduce the steady-state error. Moreover, the real-time implementability is investigated using an experimental testbed with four CMGs in pyramidal configuration, where the capability of attitude control and the optimization solver for embedded systems are focused on. The effectiveness and the performance of the control system are shown in both simulations and experiments.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 404
Author(s):  
Sara J. Ríos ◽  
Daniel J. Pagano ◽  
Kevin E. Lucas

Currently, high-performance power conversion requirements are of increasing interest in microgrid applications. In fact, isolated bidirectional dc-dc converters are widely used in modern dc distribution systems. The dual active bridge (DAB) dc-dc converter is identified as one of the most promising converter topology for the mentioned applications, due to its benefits of high power density, electrical isolation, bidirectional power flow, zero-voltage switching, and symmetrical structure. This study presents a power management control scheme in order to ensure the power balance of a dc microgrid in stand-alone operation, where the renewable energy source (RES) and the battery energy storage (BES) unit are interfaced by DAB converters. The power management algorithm, as introduced in this work, selects the proper operation of the RES system and BES system, based on load/generation power and state-of-charge of the battery conditions. Moreover, a nonlinear robust control strategy is proposed when the DAB converters are in voltage-mode-control in order to enhance the dynamic performance and robustness of the common dc-bus voltage, in addition to overcoming the instability problems that are caused by constant power loads and the dynamic interactions of power electronic converters. The simulation platform is developed in MATLAB/Simulink, where a photovoltaic system and battery system are selected as the typical RES and BES, respectively. Assessments on the performance of the proposed control scheme are conducted. Comparisons with the other control method are also provided.


Author(s):  
Shihuan Li ◽  
Lei Wang

For L4 and above autonomous driving levels, the automatic control system has been redundantly designed, and a new steering control method based on brake has been proposed; a new dual-track model has been established through multiple driving tests. The axle part of the model was improved, the accuracy of the transfer function of the model was verified again through acceleration-slide tests; a controller based on interference measurement was designed on the basis of the model, and the relationships between the controller parameters was discussed. Through the linearization of the controller, the robustness of uncertain automobile parameters is discussed; the control scheme is tested and verified through group driving test, and the results prove that the accuracy and precision of the controller meet the requirements, the robustness stability is good. Moreover, the predicted value of the model fits well with the actual observation value, the proposal of this method provides a new idea for avoiding car out of control.


2021 ◽  
Vol 11 (13) ◽  
pp. 6224
Author(s):  
Qisong Zhou ◽  
Jianzhong Tang ◽  
Yong Nie ◽  
Zheng Chen ◽  
Long Qin

The cable-driven hyper-redundant snake-like manipulator (CHSM) inspired by the biomimetic structure of vertebrate muscles and tendons, which consists of numerous joint units connected adjacently driven by elastic materials with hyper-redundant DOF, performs flexible kinematic skills and competitive compound capability under complicated working circumstances. Nevertheless, the drawback of lacking the ability to perceive the environment to perform intelligently in complex scenarios leaves a lot to be improved, which is the original intention to introduce visual tracking feedback acting as an instructor. In this paper, a cable-driven snake-like robotic arm combined with a visual tracking technique is introduced. A visual tracking approach based on dual correlation filter is designed to guide the CHSM in detecting the target and tracing after its trajectory. Specifically, it contains an adaptive optimization for the scale variation of the tracking target via pyramid sampling. For the CHSM, an explicit kinematics model is derived from its specific geometry relationships and followed by a simplification for the inverse kinematics based on some assumption or limitation. A control scheme is brought up to combine the kinematics with visual tracking via the processing tracking errors. The experimental results with a practical prototype validate the availability of the proposed compound control method with the derived kinematics model.


Sign in / Sign up

Export Citation Format

Share Document