scholarly journals Towards Safer Primers: A Review

Technologies ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 75
Author(s):  
Stefan Lundgaard ◽  
Soon Ng ◽  
Damien Cahill ◽  
Johan Dahlberg ◽  
Dong Ruan ◽  
...  

Primers are used to reliably initiate a secondary explosive in a wide range of industrial and defence applications. However, established primer technologies pose both direct and indirect risks to health and safety. This review analyses a new generation of primer materials and ignition control mechanisms that have been developed to address these risks in firearms. Electrically or optically initiated metal, oxide and semiconductor-based devices show promise as alternatives for heavy metal percussive primers. The prospects for wider use of low-cost, safe, reliable and non-toxic primers are discussed in view of these developments.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2406
Author(s):  
Mashaalah Zarejousheghani ◽  
Parvaneh Rahimi ◽  
Helko Borsdorf ◽  
Stefan Zimmermann ◽  
Yvonne Joseph

Globally, there is growing concern about the health risks of water and air pollution. The U.S. Environmental Protection Agency (EPA) has developed a list of priority pollutants containing 129 different chemical compounds. All of these chemicals are of significant interest due to their serious health and safety issues. Permanent exposure to some concentrations of these chemicals can cause severe and irrecoverable health effects, which can be easily prevented by their early identification. Molecularly imprinted polymers (MIPs) offer great potential for selective adsorption of chemicals from water and air samples. These selective artificial bio(mimetic) receptors are promising candidates for modification of sensors, especially disposable sensors, due to their low-cost, long-term stability, ease of engineering, simplicity of production and their applicability for a wide range of targets. Herein, innovative strategies used to develop MIP-based sensors for EPA priority pollutants will be reviewed.


2021 ◽  
pp. 54-59
Author(s):  
Md. Mahidy Hossain ◽  
Nadim Khandaker

In every aspect of Engineering more advanced, efficient and progressive solutions are required. The modern age of science requires innovative minds. The field of environmental engineering is also advancing with modern science and technology innovations. Measuring of methane concentration and flow rate is nothing new, yet a complicated process. The need for more accurate measurement is a necessity in proper operation of bio digesters for methane generation. The traditional process of the measuring methane content in biogas is time consuming yet complicated. The need for development and application of methane measurement techniques is not only limited to biogas but has other monitoring value as well in other health and safety applications in built environments. Winsen Electronics and Hanwei Electronics are two of the leading sensor-manufactures of China who are providing a wide range of gas detecting sensors that are locally available in Bangladesh and yet has not been applied to methane content measurement in biogas operations. In This paper we are reporting on the application of a purpose-built propane, butane detector for methane gas detection within the range of accuracy for it to be applied in methane detection in a biogas stream. This paper, reports on application and calibration of the methane detecting sensor MQ-4 with promising result. Based on the study we postulate that the sensor can be used to detect methane for an on-line monitoring of many environmental, industrial purposes such as bio digesters, integrated waste management facility. The cost of fabrication of the sensor system is only $18 making it a viable sensor with respect to cost for application in Bangladesh.


2013 ◽  
Vol 201 ◽  
pp. 131-158 ◽  
Author(s):  
Ravi Chand Singh ◽  
Manmeet Pal Singh ◽  
Hardev Singh Virk

Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring, and process control. To meet this demand, considerable research into new sensors is underway, including efforts to enhance the performance of traditional devices, such as resistive metal oxide sensors, through nanoengineering. The resistance of semiconductors is affected by the gaseous ambient. The semiconducting metal oxides based gas sensors exploit this phenomenon. Physical chemistry of solid metal surfaces plays a dominant role in controlling the gas sensing characteristics. Metal oxide sensors have been utilized for several decades for low-cost detection of combustible and toxic gases. Recent advances in nanomaterials provide the opportunity to dramatically increase the response of these materials, as their performance is directly related to exposed surface volume. Proper control of grain size remains a key challenge for high sensor performance. Nanoparticles of SnO2have been synthesized through chemical route at 5, 25 and 50°C. The synthesized particles were sintered at 400, 600 and 800°C and their structural and morphological analysis was carried out using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The reaction temperature is found to be playing a critical role in controlling nanostructure sizes as well as agglomeration. It has been observed that particle synthesized at 5 and 50°C are smaller and less agglomerated as compared to the particles prepared at 25°C. The studies revealed that particle size and agglomeration increases with increase in sintering temperature. Thick films gas sensors were fabricated using synthesized tin dioxide powder and sensing response of all the sensors to ethanol vapors was investigated at different temperatures and concentrations. The investigations revealed that sensing response of SnO2nanoparticles is size dependent and smaller particles display higher sensitivity. Table of Contents


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5334
Author(s):  
Ghada ALMisned ◽  
Huseyin O. Tekin ◽  
Antoaneta Ene ◽  
Shams A. M. Issa ◽  
Gokhan Kilic ◽  
...  

In this study, a group of heavy metal oxide glasses with a nominal composition of 55B2O3 + 19.5TeO2 + 10K2O + (15−x) PbO + xAl2O3 + 0.5Eu2O3 (where x = 0, 2.5, 5, 7.5, 10, 12.5, and 15 in wt.%) were investigated in terms of their nuclear radiation shielding properties. These glasses containing lanthanide-doped heavy metal oxide were envisioned to yield valuable results in respect to radiation shielding, and thus a detailed investigation was carried out; the obtained results were compared with traditional and new generation shields. Advanced simulation and theoretical methods have been utilized in a wide range of energy regions. Our results showed that the AL0.0 sample with the highest PbO contribution had superior shielding properties in the entire energy range. The effective removal of cross-sections for fast neutrons (ΣR) was also examined. The results indicated that AL5.0 had the greatest value. While increasing the concentration of Al2O3 in samples had a negative effect on the radiation shielding characteristics, it can be concluded that using PbO in the Eu3+ doped heavy metal oxide glasses could be a useful tool to keep gamma-ray shielding properties at a maximum level.


2013 ◽  
Vol 246 ◽  
pp. 125-136 ◽  
Author(s):  
K. Yogesh Kumar ◽  
H.B. Muralidhara ◽  
Y. Arthoba Nayaka ◽  
J. Balasubramanyam ◽  
H. Hanumanthappa

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
K. Pradeesh ◽  
Nageswara Rao Kotla ◽  
Shahab Ahmad ◽  
Vindesh K. Dwivedi ◽  
G. Vijaya Prakash

Self-assembly has the advantage of fabricating structures of complex functionalities, from molecular levels to as big as macroscopic levels. Natural self-assembly involves self-aggregation of one or more materials (organic and/or inorganic) into desired structures while templated self-assembly involves interstitial space filling of diverse nature entities into self-assembled ordered/disordered templates (both from molecular to macro levels). These artificial and engineered new-generation materials offer many advantages over their individual counterparts. This paper reviews and explores the advantages of such naturally self-assembled hybrid molecular level systems and template-assisted macro-/microstructures targeting simple and low-cost device-oriented fabrication techniques, structural flexibility, and a wide range of photonic applications.


2010 ◽  
Vol 25 (3) ◽  
pp. 289-292 ◽  
Author(s):  
Fei-Fei CHEN ◽  
Tie-Feng XU ◽  
Shi-Xun DAI ◽  
Qiu-Hua NIE ◽  
Xiang SHEN ◽  
...  

This thoroughly updated seventh edition is a comprehensive, clearly written, and practical textbook that includes information on both occupational health and environmental health, providing the necessary foundation for recognizing and preventing work-related and environmentally induced diseases and injuries. National and international experts share their knowledge and practical experience in addressing a wide range of issues and evolving challenges in their fields. A multidisciplinary approach makes this an ideal textbook for students and practitioners in public health, occupational and environmental medicine, occupational health nursing, epidemiology, toxicology, occupational and environmental hygiene, safety, ergonomics, environmental sciences, and other fields. Comprehensive coverage provides a clear understanding of occupational and environmental health and its relationships to public health, environmental sciences, and government policy. Practical case studies demonstrate how to apply the basic principles of occupational and environmental health to real-world challenges. Numerous tables, graphs, and photographs reinforce key concepts. Annotated Further Reading sections at the end of chapters provide avenues for obtaining further infomation. This new edition of the book is thoroughly updated and also contains new chapters on climate change, children’s environmental health, liver disorders, kidney disorders, and a global perspective on occupational health and safety.


Sign in / Sign up

Export Citation Format

Share Document