scholarly journals Hepatotoxicity of Pyrrolizidine Alkaloid Compound Intermedine: Comparison with Other Pyrrolizidine Alkaloids and Its Toxicological Mechanism

Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 849
Author(s):  
Ziqi Wang ◽  
Haolei Han ◽  
Chen Wang ◽  
Qinqin Zheng ◽  
Hongping Chen ◽  
...  

Pyrrolizidine alkaloids (PAs) are common secondary plant compounds with hepatotoxicity. The consumption of herbal medicines and herbal teas containing PAs is one of the main causes of hepatic sinusoidal obstruction syndrome (HSOS), a potentially life-threatening condition. The present study aimed to reveal the mechanism underlying the cytotoxicity of intermedine (Im), the main PA in Comfrey. We evaluated the toxicity of the retronecine-type PAs with different structures to cell lines derived from mammalian tissues, including primary mouse hepatocytes, human hepatocytes (HepD), mouse hepatoma-22 (H22) and human hepatocellular carcinoma (HepG2) cells. The cytotoxicity of Im to hepatocyte was evaluated by using cell counting kit-8 assay, colony formation experiment, wound healing assay and dead/live fluorescence imaging. In vitro characterization showed that these PAs were cytotoxic and induced cell apoptosis in a dose-dependent manner. We also demonstrated that Im induced cell apoptosis by generating excessive reactive oxygen species (ROS), changing the mitochondrial membrane potential and releasing cytochrome c (Cyt c) before activating the caspase-3 pathway. Importantly, we directly observed the destruction of the cell mitochondrial structure after Im treatment through transmission electron microscopy (TEM). This study provided the first direct evidence of Im inducing hepatotoxicity through mitochondria-mediated apoptosis. These results supplemented the basic toxicity data of PAs and facilitated the comprehensive and systematic evaluation of the toxicity caused by PA compounds.

2020 ◽  
Vol 15 (1) ◽  
pp. 522-531
Author(s):  
Jin-Liang Li ◽  
Zai-Qiu Wang ◽  
Xiao-Li Sun

AbstractObjectiveThis study was designed to explore the biological significance of myosin light chain 6B (MYL6B) in rectal adenocarcinoma.MethodsProfiles on the Oncomine dataset, GEPIA website, and UALCAN-TCGA database were searched to assess the MYL6B expression level in rectal adenocarcinoma tissues and normal tissues. After MYL6B knockdown using siRNA strategy, cell counting kit-8 (CCK-8) and transwell assays were conducted to measure cell proliferation, migration and invasion, respectively. Flow cytometry analysis was conducted to assess cell apoptosis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot were performed to detect the expression level of mRNAs and proteins.ResultsThe data showed that overexpression of MYL6B was observed in rectal adenocarcinoma tissues and correlated with a poor prognosis of patients. Functional in vitro experiments revealed that MYL6B knockdown could inhibit proliferation, migration, and invasion of rectal adenocarcinoma cells, while promote cell apoptosis. Moreover, western blot analysis suggested that increased expression of E-cadherin and decreased expression of N-cadherin and Vimentin were induced by si-MYL6B.ConclusionIn summary, this study elaborated on the promoting effect of MYL6B in rectal adenocarcinoma progression, thus providing novel insight for strategies of clinical diagnosis and drug application in the future clinical study.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Siming Qu ◽  
Li Jin ◽  
Hanfei Huang ◽  
Jie Lin ◽  
Weiwu Gao ◽  
...  

Abstract Background Hepatitis B Virus (HBV) contributes to liver carcinogenesis via various epigenetic mechanisms. The newly defined epigenetics, epitranscriptomics regulation, has been reported to involve in multiple cancers including Hepatocellular Carcinoma (HCC). Our previous study found that HBx, HBV encodes X protein, mediated H3K4me3 modification in WDR5-dependent manner to involve in HBV infection and contribute to oncogene expression. AlkB Homolog 5 (ALKBH5), one of epitranscriptomics enzymes, has been identified to be associated with various cancers. However, whether and how ALKBH5 is dysregulated in HBV-related HCC remains unclear yet. This study aims to investigate ALKBH5 function, clinical significance and mechanism in HBV related HCC (HBV-HCC) patients derived from Chinese people. Methods The expression pattern of ALKBH5 was evaluated by RT-qPCR, Western blot, data mining and immunohistochemistry in total of 373 HBV-HCC tissues and four HCC cell lines. Cell Counting Kit 8 (CCK8) assay, Transwell and nude mouse model were performed to assess ALKBH5 function by both small interference RNAs and lentiviral particles. The regulation mechanism of ALKBH5 was determined in HBx and WDR5 knockdown cells by CHIP-qPCR. The role of ALKBH5 in HBx mRNA N6-methyladenosine (m6A) modification was further evaluated by MeRIP-qPCR and Actinomycin D inhibitor experiment in HBV-driven cells and HBx overexpression cells. Result ALKBH5 increased in tumor tissues and predicts a poor prognosis of HBV-HCC. Mechanically, the highly expressed ALKBH5 is induced by HBx-mediated H3K4me3 modification of ALKBH5 gene promoter in a WDR5-dependent manner after HBV infection. The increased ALKBH5 protein catalyzes the m6A demethylation of HBx mRNA, thus stabilizing and favoring a higher HBx expression level. Furthermore, there are positive correlations between HBx and ALKBH5 in HBV-HCC tissues, and depletion of ALKBH5 significantly inhibits HBV-driven tumor cells’ growth and migration in vitro and in vivo. Conclusions HBx-ALKBH5 may form a positive-feedback loop to involve in the HBV-induced liver carcinogenesis, and targeting the loop at ALKBH5 may provide a potential way for HBV-HCC treatment.


2020 ◽  
Vol 22 (1) ◽  
pp. 202
Author(s):  
Josephin Glück ◽  
Julia Waizenegger ◽  
Albert Braeuning ◽  
Stefanie Hessel-Pras

Pyrrolizidine alkaloids (PAs) are a group of secondary metabolites produced in various plant species as a defense mechanism against herbivores. PAs consist of a necine base, which is esterified with one or two necine acids. Humans are exposed to PAs by consumption of contaminated food. PA intoxication in humans causes acute and chronic hepatotoxicity. It is considered that enzymatic PA toxification in hepatocytes is structure-dependent. In this study, we aimed to elucidate the induction of PA-induced cell death associated with apoptosis activation. Therefore, 22 structurally different PAs were analyzed concerning the disturbance of cell viability in the metabolically competent human hepatoma cell line HepaRG. The chosen PAs represent the main necine base structures and the different esterification types. Open-chained and cyclic heliotridine- and retronecine-type diesters induced strong cytotoxic effects, while treatment of HepaRG with monoesters did not affect cell viability. For more detailed investigation of apoptosis induction, comprising caspase activation and gene expression analysis, 14 PA representatives were selected. The proapoptotic effects were in line with the potency observed in cell viability studies. In vitro data point towards a strong structure–activity relationship whose effectiveness needs to be investigated in vivo and can then be the basis for a structure-associated risk assessment.


2018 ◽  
Vol 19 (10) ◽  
pp. 3179 ◽  
Author(s):  
Hongling Gu ◽  
Na Li ◽  
Jiangkun Dai ◽  
Yaxi Xi ◽  
Shijun Wang ◽  
...  

A series of novel bivalent β-carboline derivatives were designed and synthesized, and in vitro cytotoxicity, cell apoptosis, and DNA-binding affinity were evaluated. The cytotoxic results demonstrated that most bivalent β-carboline derivatives exhibited stronger cytotoxicity than the corresponding monomer against the five selected tumor cell lines (A549, SGC-7901, Hela, SMMC-7721, and MCF-7), indicating that the dimerization at the C3 position could enhance the antitumor activity of β-carbolines. Among the derivatives tested, 4B, 6i, 4D, and 6u displayed considerable cytotoxicity against A549 cell line. Furthermore, 4B, 6i, 4D, and 6u induced cell apoptosis in a dose-dependent manner, and caused cell cycle arrest at the S and G2/M phases. Moreover, the levels of cytochrome C in mitochondria, and the expressions of bcl-2 protein, decreased after treatment with β-carbolines, which indicated that 6i and 6u could induce mitochondria-mediated apoptosis. In addition, the results of UV-visible spectral, thermal denaturation, and molecular docking studies revealed that 4B, 6i, 4D, and 6u could bind to DNA mainly by intercalation.


Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 723
Author(s):  
Jiang Ma ◽  
Mi Li ◽  
Na Li ◽  
Wood Yee Chan ◽  
Ge Lin

Pyrrolizidine alkaloids (PAs) with 1,2-unsaturated necine base are hepatotoxic phytotoxins. Acute PA intoxication is initiated by the formation of adducts between PA-derived reactive pyrrolic metabolites with cellular proteins. The present study aimed to investigate the correlation between the formation of hepatic pyrrole–protein adducts and occurrence of PA-induced liver injury (PA-ILI), and to further explore the use of such adducts for rapidly screening the hepatotoxic potency of natural products which contain PAs. Aqueous extracts of Crotalaria sessiliflora (containing one PA: monocrotaline) and Gynura japonica (containing two PAs: senecionine and seneciphylline) were orally administered to rats at different doses for 24 h to investigate PA-ILI. Serum alanine aminotransferase (ALT) activity, hepatic glutathione (GSH) level, and liver histological changes of the treated rats were evaluated to assess the severity of PA-ILI. The levels of pyrrole–protein adducts formed in the rats’ livers were determined by a well-established spectrophotometric method. The biological and histological results showed a dose-dependent hepatotoxicity with significantly different toxic severity among groups of rats treated with herbal extracts containing different PAs. Both serum ALT activity and the amount of hepatic pyrrole–protein adducts increased in a dose-dependent manner. Moreover, the elevation of ALT activity correlated well with the formation of hepatic pyrrole–protein adducts, regardless of the structures of different PAs. The findings revealed that the formation of hepatic pyrrole–protein adducts—which directly correlated with the elevation of serum ALT activity—was a common insult leading to PA-ILI, suggesting a potential for using pyrrole–protein adducts to screen hepatotoxicity and rank PA-containing natural products, which generally contain multiple PAs with different structures.


Endocrinology ◽  
2013 ◽  
Vol 154 (6) ◽  
pp. 2069-2080 ◽  
Author(s):  
Lalita Wattanachanya ◽  
Wei-Dar Lu ◽  
Ramendra K. Kundu ◽  
Liping Wang ◽  
Marcia J. Abbott ◽  
...  

Abstract Adipose tissue plays an important role in skeletal homeostasis, and there is interest in identifying adipokines that influence bone mass. One such adipokine may be apelin, a ligand for the Gi-G protein-coupled receptor APJ, which has been reported to enhance mitogenesis and suppress apoptosis in MC3T3-E1 cells and primary human osteoblasts (OBs). However, it is unclear whether apelin plays a physiological role in regulating skeletal homeostasis in vivo. In this study, we compared the skeletal phenotypes of apelin knockout (APKO) and wild-type mice and investigated the direct effects of apelin on bone cells in vitro. The increased fractional cancellous bone volume at the distal femur was observed in APKO mice of both genders at 12 weeks of age and persisted until the age of 20. Cortical bone perimeter at the femoral midshaft was significantly increased in males and females at both time points. Dynamic histomorphometry revealed that APKO mice had increased rates of bone formation and mineral apposition, with evidences of accelerated OB proliferation and differentiation, without significant alteration in osteoclast activity. An in vitro study showed that apelin increased proliferation of primary mouse OBs as well as suppressed apoptosis in a dose-dependent manner with the maximum effect at 5nM. However, it had no effect on the formation of mineralized nodules. We did not observed significantly altered in osteoclast parameters in vitro. Taken together, the increased bone mass in mice lacking apelin suggested complex direct and paracrine/endocrine effects of apelin on bone, possibly via modulating insulin sensitivity. These results indicate that apelin functions as a physiologically significant antianabolic factor in bone in vivo.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zhi-Jian Li ◽  
Amima Abula ◽  
Abudumijiti Abulizi ◽  
Chun Wang ◽  
Qin Dou ◽  
...  

Background. Trichophyton rubrum, among other dermatophytes, is a major causative agent for superficial dermatomycoses like onychomycosis and tinea pedis, especially among pediatric and geriatric populations. Ellagic acid (EA) and shikonin (SK) have been reported to have many bioactivities, including antifungal activity. However, the mechanism of EA and SK on Trichophyton rubrum has not yet been reported. Objectives. The purposes of this study were to evaluate the antifungal activities of EA and SK against Trichophyton rubrum and to illuminate the underlying action mechanisms. Methods. The effect of EA (64, 128, and 256 μg/mL) and SK (8, 4, and 2 μg/mL) on Trichophyton rubrum was investigated with different doses via detecting cell viability, ultrastructure with using a scanning electron microscope (SEM), cell apoptosis and necrosis by using the flow cytometry instrument technique (FCIT), and the ergosterol biosynthesis pathway-related fungal cell membrane key gene expressions in vitro. Results. SEM detection revealed that the T. rubrum cell surface was shrivelled, folded, and showed deformation and expansion, visible surface peeling, and broken hyphae, and cell contents overflowed after being treated with EA and SK; the cell apoptosis rate was significantly increased in dose-dependent manner after T. rubrum was treated with EA and SK; the qPCR results showed that mRNA expression of MEP4 and SUB1 was downregulated in EA- and SK-treated groups. Conclusions. Overall, our results revealed the underlying antifungal mechanism of EA and SK, which may be related to the destruction of the fungal cell membrane and inhibition of C14 demethylase and the catalytic rate of squalene cyclooxidase in the ergosterol biosynthesis pathway via downregulation of MEP4 and SUB1, suggesting that EA and SK have the potential to be developed further as a natural antifungal agent for clinical use.


2020 ◽  
Vol 48 (9) ◽  
pp. 030006052094976
Author(s):  
Min Li ◽  
Ying Zhang ◽  
Jixing Wang

Objective Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, and excessive endoplasmic reticulum (ER) stress is closely correlated with the cell injury caused by sepsis. This study aimed to analyze the possible role of ER stress in SAE cell models. Methods PC12 and MES23.5 cells were treated with increasing concentrations of lipopolysaccharides (LPS). The Cell Counting Kit-8 assay was used to detect cell viability and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to assess cell apoptosis. In addition, the protein expression levels of ER stress markers [GRP78, CHOP, inositol-requiring enzyme 1 (IRE1), and PKR-like ER kinase (PERK)] and apoptosis-related proteins (Bax, Bcl-2, caspase-3, and cleaved caspase-3) were analyzed using western blotting. Results LPS treatment activated ER stress markers in both the PC12 and MES23.5 cells. The overexpression of GRP78 significantly reduced cell viability and enhanced cell apoptosis in a time-dependent manner. An ER stress inhibitor, 4-PBA, significantly enhanced cell viability and inhibited the cell apoptosis induced by LPS. Therefore, an enhanced unfolded protein response (UPR) and UPR suppression may regulate cell apoptosis. Conclusions UPR was shown to be involved in regulating LPS-induced neuron injury. UPR could be a potential therapeutic target in SAE.


2017 ◽  
Vol 41 (2) ◽  
pp. 784-794 ◽  
Author(s):  
Ying Zong ◽  
Shijie Feng ◽  
Jinwei Cheng ◽  
Chenlin Yu ◽  
Guocai Lu

Background/Aims: Activating transcription factor 4 (ATF4) is a member of the activating transcription factor family which regulates the expression of genes involved in amino acid metabolism, redox homeostasis and ER stress responses. ATF4 is also over-expressed in human solid tumors, although its effect on responsiveness to radiation is largely unexplored. Methods: Real-time PCR was used to detect ATF4 mRNA levels in cells treated with different doses of 60Coγ radiation. Cell viability was assayed using a cell counting kit. The cell cycle was analyzed using flow cytometry, and cell apoptosis was assayed using Annexin V-PI double labeling. Small interfering RNA (siRNA) against ATF4 was transfected into ECV304 cells using Lipofectamine 2000. An ATF4 over-expression plasmid (p-ATF4-CGN) was transfected into HEK293 cells that endogenously expressed low levels of ATF4. The levels of intracellular reactive oxygen species (ROS) were measured using CM-H2DCFDA as a probe. Results: ATF4 mRNA and protein expression levels were higher after radiation and increased in a dose- and time-dependent manner in AHH1 lymphoblast cells (P < 0.05). An increase in ATF4 levels was also observed after radiation in primary murine spleen cells, human endothelial ECV304 cells, human liver LO2 cells, breast cancer MCF7 cells, and human hepatocellular carcinoma HEPG2 cells. No change was observed in human embryonic kidney 293 (HEK293) cells. Over-expressing ATF4 in HEK293 cells inhibited cell proliferation, increased cell apoptosis and significantly increased the proportion of cells in G1 phase. Conversely, when ATF4 expression was knocked down using siRNA in ECV304 cells, it protected the cells from radiation-induced apoptosis. These findings suggest that ATF4 may play a role in radiation-induced cell killing by inhibiting cell proliferation and promoting cell apoptosis. Conclusions: In this study, we found that radiation up-regulated the expression of ATF4. We used ATF4 knockdown and over-expression systems to show that ATF4 may play a role in radiation-induced cellular apoptosis.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 834-834
Author(s):  
Keith A. Moskowitz ◽  
Josh Dee ◽  
Jason Barnidge ◽  
Ruth Sum ◽  
David Ho ◽  
...  

Abstract Availability of platelet concentrates for treatment of bleeding associated with thrombocytopenia, trauma, or drug-induced coagulopathies is problematic due to the short 5 day platelet storage time and because platelets require controlled shaking at ambient temperature in order to remain viable, a condition which augments bacterial growth. To address the platelet availability problem we expanded upon trehalose cryo-preservation technology to create a lyophilized hemostatic platelet derivative. Washed platelets were stabilized by accumulation of 5–10 mM intracellular trehalose via fluid phase endocytosis then formulated with excipients and lyophilized. Lyophilized platelets were instantaneously rehydrated with > 90% recovery and were stable for at least 3–6 months at ambient temperatures. Rehydrated (RH) platelets responded quantitatively to α-and γ-thrombin and ristocetin by transmittance aggregometry and were partially agglutinated by collagen as judged by aggregometry and single cell counting using the Platelet Works® system. RH platelets co-aggregated in a dose dependent manner when mixed with fresh autologous platelets during collagen-induced activation. Aggregation response to low-dose thrombin and collagen was inhibited by the GPIIb/IIIa antagonist RGDS and by EGTA. RH platelets were quantitatively incorporated into fibrin clots and elicited platelet-dependent fibrin-clot retraction ~ 60% as well as fresh platelets. RH platelets were similar in size to fresh and had less than 25% submicron particles as judged by electronic particle counting and flow cytometry scatter profiles. RH platelets were partially activated upon rehydration as judged by anti P-selectin and anti-LAMP-3 binding, yet GPIIb/IIIa remained in a resting conformation, as judged by a lack of PAC-1 binding. GPIIb/IIIa receptors were present as judged by the binding of complex-dependent (clone 5B12) and function-blocking (clone P2) antibodies. RH platelets also contained intact GPIbα as judged by binding of the function-blocking MoAb AN51. Function of GPIIb/IIIa and collagen receptors on RH platelets was further demonstrated as RH platelets adhered to immobilized fibrinogen and collagen in the absence of added agonists and in a dose-dependent manner. Moreover, RH platelets exhibited a two-fold increase in platelet procoagulant activity in the presence of thrombin receptor agonist peptide SFLLRN as judged by Annexin-V binding. Procoagulant and hemostatic activity was further demonstrated as RH platelets accelerated the clotting of recalcified whole thrombocytopenic blood in a dose-dependent manner similarly to fresh platelets. Lastly, RH platelets corrected the coagulopathy induced by contact pathway inhibition with aprotinin during the recalcification of citrated whole blood. The technology has been scaled to single donor platelet aphaeresis units, equivalent to a standard transfusion dose. Preclinical animal models of safety, efficacy, and circulation persistence are currently being evaluated. In summary, trehalose- stabilized lyophilized platelet derivatives contain numerous in vitro hemostatic properties and may offer an attractive alternative to fresh platelet transfusions when the latter are indicated yet unavailable.


Sign in / Sign up

Export Citation Format

Share Document