scholarly journals Current Developments and Challenges in Plant Viral Diagnostics: A Systematic Review

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 412
Author(s):  
Gajanan T. Mehetre ◽  
Vincent Vineeth Leo ◽  
Garima Singh ◽  
Antonina Sorokan ◽  
Igor Maksimov ◽  
...  

Plant viral diseases are the foremost threat to sustainable agriculture, leading to several billion dollars in losses every year. Many viruses infecting several crops have been described in the literature; however, new infectious viruses are emerging frequently through outbreaks. For the effective treatment and prevention of viral diseases, there is great demand for new techniques that can provide accurate identification on the causative agents. With the advancements in biochemical and molecular biology techniques, several diagnostic methods with improved sensitivity and specificity for the detection of prevalent and/or unknown plant viruses are being continuously developed. Currently, serological and nucleic acid methods are the most widely used for plant viral diagnosis. Nucleic acid-based techniques that amplify target DNA/RNA have been evolved with many variants. However, there is growing interest in developing techniques that can be based in real-time and thus facilitate in-field diagnosis. Next-generation sequencing (NGS)-based innovative methods have shown great potential to detect multiple viruses simultaneously; however, such techniques are in the preliminary stages in plant viral disease diagnostics. This review discusses the recent progress in the use of NGS-based techniques for the detection, diagnosis, and identification of plant viral diseases. New portable devices and technologies that could provide real-time analyses in a relatively short period of time are prime important for in-field diagnostics. Current development and application of such tools and techniques along with their potential limitations in plant virology are likewise discussed in detail.

2020 ◽  
Vol 116 (11/12) ◽  
Author(s):  
Chrissie Rey

Plant viruses cause widespread disease in agriculturally important crops, resulting in a reduction in both quality and quantity of produce. The introduction of intensive crop monoculture has resulted in an exponential increase in viral diseases which can cross over from wild indigenous plants. Viral pathogens also can occur in mixed infections, and rapid, sensitive and reliable diagnostic methods are required to identify and characterise the viruses responsible for the field diseases. In comparison to bacterial and fungal diseases, viral diseases are more difficult to diagnose. This review covers a period (1985–2011) in the history of virus discovery in South Africa during which several plant viruses from commercial and smallscale farms were identified and characterised. Interestingly, novel viruses were discovered in three crops, namely guar and cassava grown by small-scale farmers in Mpumalanga, and in commercial tobacco. The implication of these plant diseases is potential yield loss to farmers which can affect their livelihoods, and result in severe economic loss for the food and agriculture industries. Accurate identification of the causal viral agents of these viral diseases is a prerequisite for development of effective management strategies.


2020 ◽  
Vol 8 ◽  
pp. 65-70
Author(s):  
Oleksii Duda ◽  
◽  
Liliana Dzhydzhora ◽  
Oleksandr Matsiuk ◽  
Andrii Stanko ◽  
...  

The concept of creating a multi-level mobile personalized system for fighting viral diseases, in particular Covid-19, was developed. Using the integration of the Internet of Things, Cloud Computing and Big Data technologies, the system involves a combination of two architectures: client-server and publication-subscription. The advantage of the system is the permanent help with viral diseases, namely on communication, information, and medical stages. The smart city concept in the context of viral disease control focuses on the application of Big Data analysis methods and the improvement of forecasting procedures and emergency treatment protocols. Using different technologies, cloud server stores the positioning data obtained from different devices, and the application accesses API to display and analyze the positioning data in real time. Due to the technologies combination, internal and external positioning can be used with a certain accuracy degree, being useful for various medical and emergency situations and analysis and the following processing by other smart city information systems. The result of the given investigation is the development of the conceptual model of multi-level mobile personalized health status monitoring system used for intellectual data analysis, prediction, treatment and prevention of viral diseases such as Covid-19 in modern “smart city”.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3728
Author(s):  
Ching-Chou Wu ◽  
Hao-Yu Yen ◽  
Lu-Ting Lai ◽  
Guey-Chuen Perng ◽  
Cheng-Rei Lee ◽  
...  

Developing rapid and sensitive diagnostic methods for dengue virus (DENV) infection is of prime priority because DENV infection is the most prevalent mosquito-borne viral disease. This work proposes an electrochemical impedance spectroscopy (EIS)-based genosensor for the label-free and nucleic acid amplification-free detection of extracted DENV RNA intended for a sensitive diagnosis of DENV infection. A concentration ratio of 0.04 mM 6-mercaptohexanoic acid (MHA) to 1 mM 6-mercapto-1-hexanol (MCH) was selected to modify thin-film gold electrodes as a link to control the coverage of self-designed probe DNA (pDNA) at a density of 4.5 ± 0.4 × 1011 pDNA/cm2. The pDNA/MHA/MCH-modified genosensors are proven to improve the hybridization efficiency of a synthetic 160-mer target DNA (160mtDNA) with a 140-mer electrode side overhang as compared to other MHA/MCH ratio-modified genosensors. The MHA(0.04 mM)/MCH(1 mM)-modified genosensors also present good hybridization efficiency with the extracted DENV serotype 1 (DENV1) RNA samples, having the same electrode side overhangs with the 160mtDNA, showing a low detection limit of 20 plaque forming units (PFU)/mL, a linear range of 102–105 PFU/mL and good selectivity for DENV1. The pDNA density-controlled method has great promise to construct sensitive genosensors based on the hybridization of extracted DENV nucleic acids.


2005 ◽  
Vol 53 (1) ◽  
pp. 113-124 ◽  
Author(s):  
S. Belák

The worldwide occurrence and re-occurrence of transboundary diseases like foot-and-mouth disease or classical swine fever indicates that there is a high need for the development of powerful, robust and high-capacity new diagnostic methods, which are able to detect the causative agents before they could spread to large populations and cause tremendous losses. This article reports the experiences of a research group on the development of molecular methods for the improved diagnosis of a range of porcine viral diseases, including diseases on List A of the Office International des Epizooties (OIE). Nucleic acid hybridisation and various polymerase chain reaction (PCR) assays have been applied for routine diagnosis of a large range of viral diseases. During the last one-and-a-half decade more than 40 nested PCR assays have been developed to detect a variety of DNA and RNA viruses. False positive and negative results are avoided by the use of special tools, practices and internal controls of amplification (mimics). Recently, real-time PCR methods (TaqMan, molecular beacons, Primer-Probe Energy Transfer system) have been developed for the diagnosis of a wide range of diseases, such as foot-and-mouth disease, swine vesicular disease and vesicular stomatitis. Multiplex PCR packages have been developed for the simultaneous detection of eight important viruses of swine. By introducing nucleic acid extraction and pipetting robotics, together with the multi-channel real-time PCR machines, the diagnostic procedures have become rapid, robust and automated. In order to standardise the real-time PCR assays, the rules of OIE are considered. By following the five steps of OIE standardisation and validation, the new diagnostic procedures are nationally and internationally standardised and harmonised. The rapid, powerful and internationally standardised molecular diagnosis contributes to the reduction of losses caused by the transboundary viral diseases in swine populations.


2020 ◽  
Author(s):  
Kaunara Ally Azizi ◽  
Arnold J Ndaro ◽  
Athanasia Maro ◽  
Adonira T Saro ◽  
Reginald Kavishe

Abstract Objective Rapid and accurate laboratory confirmatory is very essential for control measures of dengue virus infections. However, many cases of dengue virus infections in most of the hospitals remain undiagnosed due to presence of other febrile illnesses with overlapping symptoms and lack of specificity in most of laboratory diagnostic methods. This study was set to optimize conditions for real time reverse transcriptase polymerase chain reaction (RT-PCR) for detection of dengue virus by using rapid and simple nucleic acid extraction method.Results The real time RT-PCR technique was successfully optimized using simple and rapid method for purification of nucleic acid, ‘boom method’. The technique works better when performed in a two-step procedure and can works well with all range of real time PCR machines. The optimized real time RT-PCR used in the present study is a valuable and reliable technique for routine diagnosis of dengue. Further investigation on the cost effectiveness in adopting this technique for routine screening and monitoring of the dengue infection should be done.


2008 ◽  
Vol 57 (3) ◽  
pp. 296-303 ◽  
Author(s):  
L. Metwally ◽  
D. J. Fairley ◽  
P. V. Coyle ◽  
R. J. Hay ◽  
S. Hedderwick ◽  
...  

The limitations of classical diagnostic methods for invasive Candida infections have led to the development of molecular techniques such as real-time PCR to improve diagnosis. However, the detection of low titres of Candida DNA in blood from patients with candidaemia requires the use of extraction methods that efficiently lyse yeast cells and recover small amounts of DNA suitable for amplification. In this study, a Candida-specific real-time PCR assay was used to detect Candida albicans DNA in inoculated whole blood specimens extracted using seven different extraction protocols. The yield and quality of total nucleic acids were estimated using UV absorbance, and specific recovery of C. albicans genomic DNA was estimated quantitatively in comparison with a reference (Qiagen kit/lyticase) method currently in use in our laboratory. The extraction protocols were also compared with respect to sensitivity, cost and time required for completion. The TaqMan PCR assay used to amplify the DNA extracts achieved high levels of specificity, sensitivity and reproducibility. Of the seven extraction protocols evaluated, only the MasterPure yeast DNA extraction reagent kit gave significantly higher total nucleic acid yields than the reference method, although nucleic acid purity was highest using either the reference or YeaStar genomic DNA kit methods. More importantly, the YeaStar method enabled C. albicans DNA to be detected with highest sensitivity over the entire range of copy numbers evaluated, and appears to be an optimal method for extracting Candida DNA from whole blood.


2019 ◽  
pp. 60-66
Author(s):  
Viet Quynh Tram Ngo ◽  
Thi Ti Na Nguyen ◽  
Hoang Bach Nguyen ◽  
Thi Tuyet Ngoc Tran ◽  
Thi Nam Lien Nguyen ◽  
...  

Introduction: Bacterial meningitis is an acute central nervous infection with high mortality or permanent neurological sequelae if remained undiagnosed. However, traditional diagnostic methods for bacterial meningitis pose challenge in prompt and precise identification of causative agents. Aims: The present study will therefore aim to set up in-house PCR assays for diagnosis of six pathogens causing the disease including H. influenzae type b, S. pneumoniae, N. meningitidis, S. suis serotype 2, E. coli and S. aureus. Methods: inhouse PCR assays for detecting six above-mentioned bacteria were optimized after specific pairs of primers and probes collected from the reliable literature resources and then were performed for cerebrospinal fluid (CSF) samples from patients with suspected meningitis in Hue Hospitals. Results: The set of four PCR assays was developed including a multiplex real-time PCR for S. suis serotype 2, H. influenzae type b and N. meningitides; three monoplex real-time PCRs for E. coli, S. aureus and S. pneumoniae. Application of the in-house PCRs for 116 CSF samples, the results indicated that 48 (39.7%) cases were positive with S. suis serotype 2; one case was positive with H. influenzae type b; 4 cases were positive with E. coli; pneumococcal meningitis were 19 (16.4%) cases, meningitis with S. aureus and N. meningitidis were not observed in any CSF samples in this study. Conclusion: our in-house real-time PCR assays are rapid, sensitive and specific tools for routine diagnosis to detect six mentioned above meningitis etiological agents. Key words: Bacterial meningitis, etiological agents, multiplex real-time PCR


2018 ◽  
Vol 68 (12) ◽  
pp. 2857-2859
Author(s):  
Cristina Mihaela Ghiciuc ◽  
Andreea Silvana Szalontay ◽  
Luminita Radulescu ◽  
Sebastian Cozma ◽  
Catalina Elena Lupusoru ◽  
...  

There is an increasing interest in the analysis of salivary biomarkers for medical practice. The objective of this article was to identify the specificity and sensitivity of quantification methods used in biosensors or portable devices for the determination of salivary cortisol and salivary a-amylase. There are no biosensors and portable devices for salivary amylase and cortisol that are used on a large scale in clinical studies. These devices would be useful in assessing more real-time psychological research in the future.


2019 ◽  
Vol 26 (11) ◽  
pp. 1946-1959 ◽  
Author(s):  
Le Minh Tu Phan ◽  
Lemma Teshome Tufa ◽  
Hwa-Jung Kim ◽  
Jaebeom Lee ◽  
Tae Jung Park

Background:Tuberculosis (TB), one of the leading causes of death worldwide, is difficult to diagnose based only on signs and symptoms. Methods for TB detection are continuously being researched to design novel effective clinical tools for the diagnosis of TB.Objective:This article reviews the methods to diagnose TB at the latent and active stages and to recognize prospective TB diagnostic methods based on nanomaterials.Methods:The current methods for TB diagnosis were reviewed by evaluating their advantages and disadvantages. Furthermore, the trends in TB detection using nanomaterials were discussed regarding their performance capacity for clinical diagnostic applications.Results:Current methods such as microscopy, culture, and tuberculin skin test are still being employed to diagnose TB, however, a highly sensitive point of care tool without false results is still needed. The utilization of nanomaterials to detect the specific TB biomarkers with high sensitivity and specificity can provide a possible strategy to rapidly diagnose TB. Although it is challenging for nanodiagnostic platforms to be assessed in clinical trials, active TB diagnosis using nanomaterials is highly expected to achieve clinical significance for regular application. In addition, aspects and future directions in developing the high-efficiency tools to diagnose active TB using advanced nanomaterials are expounded.Conclusion:This review suggests that nanomaterials have high potential as rapid, costeffective tools to enhance the diagnostic sensitivity and specificity for the accurate diagnosis, treatment, and prevention of TB. Hence, portable nanobiosensors can be alternative effective tests to be exploited globally after clinical trial execution.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Roberto Rodriguez-Zurrunero ◽  
Ramiro Utrilla ◽  
Elena Romero ◽  
Alvaro Araujo

Wireless Sensor Networks (WSNs) are a growing research area as a large of number portable devices are being developed. This fact makes operating systems (OS) useful to homogenize the development of these devices, to reduce design times, and to provide tools for developing complex applications. This work presents an operating system scheduler for resource-constraint wireless devices, which adapts the tasks scheduling in changing environments. The proposed adaptive scheduler allows dynamically delaying the execution of low priority tasks while maintaining real-time capabilities on high priority ones. Therefore, the scheduler is useful in nodes with rechargeable batteries, as it reduces its energy consumption when battery level is low, by delaying the least critical tasks. The adaptive scheduler has been implemented and tested in real nodes, and the results show that the nodes lifetime could be increased up to 70% in some scenarios at the expense of increasing latency of low priority tasks.


Sign in / Sign up

Export Citation Format

Share Document