scholarly journals Use of a Specific Phage Cocktail for Soft Rot Control on Ware Potatoes: A Case Study

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1095
Author(s):  
Eugenia N. Bugaeva ◽  
Maya V. Voronina ◽  
Dmitry M. Vasiliev ◽  
Anna A. Lukianova ◽  
Nikolay N. Landyshev ◽  
...  

Using bacteriophages (bacterial viruses) to control pathogenic bacteria is a promising approach in horticulture. However, the application of this strategy in real conditions requires compliance with particular technological and environmental restraints. The presented paper concerns the process of phage selection to create a cocktail that is efficient against the circulating causal agents of potato soft rot. The resulting phage cocktail causes a complete lysis of a mixture of circulating pectobacterial strains in vitro. In the context of being used to treat ware potatoes during off-season storage, the protocol of phage application via the humidity maintenance system was designed. The phage cocktail was shown to reduce the population of Pectobacterium spp. 10–12-fold, achieving a population that was below a symptomatic threshold.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Surang Chankhamhaengdecha ◽  
Suphatra Hongvijit ◽  
Akkaraphol Srichaisupakit ◽  
Pattra Charnchai ◽  
Watanalai Panbangred

Several Gram-negative pathogenic bacteria employN-acyl-L-homoserine lactone (HSL) quorum sensing (QS) system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE) results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9%) and 68 (51.5%) of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at151.30±3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified asStreptomycesbased on16S  rRNAgene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In anin vitropathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused byPectobacterium carotovorumssp.carotovorumas demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophyticStreptomyces.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 482 ◽  
Author(s):  
Nader A. Ashmawy ◽  
Said I. Behiry ◽  
Asma A. Al-Huqail ◽  
Hayssam M. Ali ◽  
Mohamed Z. M. Salem

Phenolic acids and natural extracts, as ecofriendly environmental agents, can be used as bio bactericides against the growth of plant pathogenic bacteria. In this study, isolation trails from infected potato tubers and stems that showed soft rot symptoms in fields revealed two soft rot bacterial isolates and were initially identified through morphological, physiological, and pathogenicity tests. The molecular characterization of these isolates via PCR, based on the 16S rRNA region, was carried out by an analysis of the DNA sequence via BLAST and Genbank, and showed that the soft rot bacterial isolates belong to Pectobacterium carotovorum subsp. carotovorum (PCC1) and Dickeya solani (Ds1). The in vitro results of the tested phenolic acids against the cultured bacterial isolates proved that concentrations of 800, 1600, and 3200 μg/mL were the most effective. Ferulic acid was the potent suppressive phenolic acid tested against the Ds1 isolate, with an inhibition zone ranging from 6.00 to 25.75 mm at different concentrations (25–3200 μg/mL), but had no effect until reaching a concentration of 100 μg/mL in the PCC1 isolate, followed by tannic acid, which ranged from 7.00 to 25.50 mm. On the other hand, tannic acid resulted in a significant decrease in the growth rate of the PCC1 isolate with a mean of 9.11 mm. Chlorogenic acid was not as effective as the rest of the phenolic acids compared with the control. The n-hexane oily extract (HeOE) from Bougainvillea spectabilis bark showed the highest activity against PCC1 and Ds1, with inhibition zone values of 12 and 12.33 mm, respectively, at a concentration of 4000 μg/mL; while the HeOE from Citharexylum spinosum wood showed less activity. In the GC/MS analysis, nonanal, an oily liquid compound, was found ata percentage of 38.28%, followed by cis-2-nonenal (9.75%), which are the main compounds in B. spectabilis bark HeOE, and 2-undecenal (22.39%), trans-2-decenal (18.74%), and oleic acid (10.85%) were found, which are the main compounds in C. spinosum wood HeOE. In conclusion, the phenolic acids and plant HeOEs seem to raise the resistance of potato plants, improving their defense mechanisms against soft rot bacterial pathogens.


2017 ◽  
Vol 4 (1) ◽  
pp. 10
Author(s):  
Yuliana Prasetyaningsih ◽  
Eni Kurniati ◽  
Dina Setiarini

Background: Infectious diseases are diseases caused by pathogenic bacteria such as Streptococcus pyogenes bacteria. This bacterium is a gram-positive, cocci-shaped chain that infect the respiratory tract. As a result of irrational use of antibiotics is causing bacterial resistance. Utilization of plants used in traditional medicine as an alternative by some people. Binahong (Anredera cordifolia (Ten.) Steenis) is a plant that can be used as a traditional medicine can be found easily in Indonesia. Binahong is one of the medicinal plants are thought to have antibacterial effects. Objective: To investigate the effect of leaf extracts binahong (Anredera cordifolia (Ten) Steenis) against Streptococcus pyogenes bacterial growth in vitro. Research Methods: The study was conducted in July 2014 in the Laboratory of Bacteriology of Ministry of Health polytechnic Yogyakarta. Types experimental research is real by using desain one-short case study. Binahong leaves were tested came from Yogyakarta Sleman. Analysis of the data obtained and performed descriptive statistics and presented in tables or graphs. The statistical test used is one way analysis of variance (One Way Anova). Result: The mean diameter of inhibition zone binahong leaf extract on the growth of the bacterium Streptococcus pyogenes at the smallest concentration that is 20% of 12.3 mm and largest concentration of 100% at 23.6 mm. Conclusion: there is influence binahong leaf extract against Streptococcus pyogenes growth in vitro.


2019 ◽  
Vol 366 (Supplement_1) ◽  
pp. i97-i104
Author(s):  
Alexander Byth Carstens ◽  
Amaru Miranda Djurhuus ◽  
Witold Kot ◽  
Lars Hestbjerg Hansen

ABSTRACT Pectobacterium atrosepticum is a species of plant pathogenic bacteria responsible for significant losses in potato production worldwide. Pectobacterium atrosepticum can cause blackleg disease on potato stems as well as the tuber disease termed potato soft rot. Methods for the effective control of these diseases are limited and are primarily based on good agricultural practices. Bacteriophages, viruses of bacteria, could be used as an alternative, environmentally friendly, control measure. Here, we describe the isolation and characterization of 29 phages virulent to P. atrosepticum. The phages belong to 12 different species based on a 95% sequence identity cut-off. Furthermore, based on sequence diversity and propagation results, we selected six of these phages to form a phage cocktail. The phages in the cocktail was tested on a number of P. atrosepticum strains in order to determine their host range. The phages was found to lyse 93% of the tested strains. The cocktail was subsequently tested for its effectiveness in combatting potato soft rot under simulated storage conditions. Use of the phage cocktail reduced both disease incidence and disease severity by 61% and 64%, respectively, strongly indicating that phage biocontrol has the potential to reduce the economic impact of soft rot in potato production.


1969 ◽  
Vol 91 (1-2) ◽  
pp. 19-30
Author(s):  
Judith Rengifo ◽  
Mildred Zapata ◽  
Manuel Díaz ◽  
Rafael Inglés

Plantain production (Musa spp.) in Central and South America and the Caribbean is affected by bacterial diseases. In Puerto Rico, production of the plantain 'Hua Moa' is affected by a condition known as bunch abortion or 'choke neck'. This condition in some cases is accompanied by soft rot symptoms and therefore could be related to phytopathogenic bacteria. The purpose of this study was to identify the bacteria related to the soft rot tissues on plants affected with the bunch abortion symptoms and determine their virulence in other clones of plantain and banana. Bacterial colonies were isolated from pseudostems of Hua Moa at three locations in Puerto Rico, using semi-selective and nutritive agar media. The pathogenicity was determined by using potato and plantain pseudostem discs in humid chambers under in vitro conditions. Pathogenic bacteria were identified by using the BIOLOG® system. Under greenhouse conditions, the virulence of Burkholderia gladioli, Pseudomonas spinosa, Erwinia chrysanthemi and Pseudomonas aeruginosa was confirmed on plantain (Maricongo, FIAH-121, Enano Común, and Hua Moa) and banana (Grand Nain) using a scale from 1 to 9. All clones evaluated under greenhouse conditions were susceptible to E. chrysanthemi, potential causal agent of soft rot in Hua Moa plantain once the bunch abortion appears. Burkholderia gladioli is reported for the first time affecting plantain and banana.This bacterium was more virulent in Hua Moa and Grand Nain clones with severity of 7 and 5, respectively, than in Maricongo, severity 3. Pseudomonas spinosa and P. aeruginosa produced less damage with severity less than 4, than E. chrysanthemi and B. gladioli with severity greater than 4. This research was conducted under in vitro and greenhouse conditions and demonstrates that the most important bacteria causing soft rot in plants with the choke neck condition are E. chrysanthemi and B. gladioli. It is recommended to conduct field studies using plants up to the reproductive stage to determine whether these bacteria are also related as causal agents of the choke neck.


2020 ◽  
Vol 11 ◽  
pp. 37-43
Author(s):  
Prof. Teodora P. Popova ◽  
Toshka Petrova ◽  
Ignat Ignatov ◽  
Stoil Karadzhov

The antimicrobial action of the dietary supplement Oxidal® was tested using the classic Bauer and Kirby agar-gel diffusion method. Clinical and reference strains of Staphylococcus aureus and Escherichia coli were used in the studies. The tested dietary supplement showed a well-pronounced inhibitory effect against the microbial strains commensurable with that of the broad-spectrum chemotherapeutic agent Enrofloxacin and showed even higher activity than the broad spectrum antibiotic Thiamphenicol. The proven inhibitory effect of the tested dietary supplement against the examined pathogenic bacteria is in accordance with the established clinical effectiveness standards for antimicrobial agents.


2018 ◽  
Vol 17 (6) ◽  
pp. 167-174 ◽  
Author(s):  
Małgorzata Schollenberger ◽  
Tomasz M. Staniek ◽  
Elżbieta Paduch-Cichal ◽  
Beata Dasiewicz ◽  
Agnieszka Gadomska-Gajadhur ◽  
...  

Plant essential oils of six aromatic herb species and interspecies hybrids of the family Lamiaceae – chocolate mint (Mentha piperita × ‘Chocolate’), pineapple mint (Mentha suaveolens ‘Variegata’), apple mint (Mentha × rotundifolia), spearmint (Mentha spicata), orange mint (Mentha × piperita ‘Granada’) and strawberry mint (Mentha × villosa ‘Strawberry’) – were investigated for antimicrobial effects against plant pathogenic bacteria: Agrobacterium tumefaciens, Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. corylina. The screening was carried out in vitro on agar plates filled with the target organism. All essential oils screened exhibited a higher level of antibacterial activity against A. tumefaciens and X. arboricola pv. corylina than streptomycin used as a standard in all tests. The antimicrobial effect of streptomycin and five mint oils was at the same level for P. syringae pv. syringae. There were no significant differences in the influence of the chocolate mint oil on the growth inhibition of all bacteria tested. Plant essential oils from pineapple mint, apple mint, spearmint and strawberry mint showed the weakest antimicrobial activity against P. syringae pv. syringae and the strongest towards A. tumefaciens and X. arboricola pv. corylina. The essential oils from strawberry mint, pineapple mint, spearmint and apple mint had the strongest effect on A. tumefaciens, and the lowest inhibitory activity was exhibited by the chocolate mint and orange mint essential oils. X. arboricola pv. corylina was the most sensitive to the strawberry mint, pineapple mint and spearmint oils. The chocolate mint oil showed the greatest activity against P. syringae pv. syringae.


Author(s):  
Guru Kumar Dugganaboyana ◽  
Chethankumar Mukunda ◽  
Suresh Darshini Inakanally

In recent years, green nanotechnology-based approaches using plant materials have been accepted as an environmentally friendly and cost-effective approach with various biomedical applications. In the current study, AgNPs were synthesized using the seed extract of the Eugenia uniflora L. (E.uniflora). Characterization was done using UV-Visible spectroscopy, X-ray diffraction (XRD), scanning electronic microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. The formation of AgNPs has confirmed through UV-Visible spectroscopy (at 466 nm) by the change of color owing to surface Plasmon resonance. Based on the XRD pattern, the crystalline property of AgNPs was established. The functional group existing in seed of E.uniflora extract accountable for the reduction of Ag+ ion and the stabilization of AgNPs was investigated. The morphological structures and elemental composition was determined by SEM and EDX analysis. With the growing application of AgNPs in biomedical perspectives, the biosynthesized AgNPs were evaluated for their antibacterial and along with their antidiabetic potential. The results showed that AgNPs are extremely effective with potent antidiabetic potential at a very low concentration. It also exhibited potential antibacterial activity against the three tested human pathogenic bacteria. Overall, the results highlight the effectiveness and potential applications of AgNPs in biomedical fields such as in the treatment of acute illnesses as well as in drug formulation for treating various diseases such as cancer and diabetes. It could be concluded that E. uniflora seed extract AgNPs can be used efficiently for in vitro evaluation of their antibacterial and antidiabetic effects with potent biomedical applications.


2017 ◽  
Vol 68 (6) ◽  
pp. 1188-1192
Author(s):  
Daniela Avram ◽  
Nicolae Angelescu ◽  
Dan Nicolae Ungureanu ◽  
Ionica Ionita ◽  
Iulian Bancuta ◽  
...  

The study in vitro of the glass powders bioactivity was performed by soaking them in simulated body fluid for 3 to 21 days at a temperature of 37�C and pH = 7.20. The synthesis de novo of hydroxyapatite, post soaking was confirmed by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study of the antimicrobial activity was performed by microbiological examination on two strains of pathogenic bacteria involved in postoperative nosocomial infections.


Sign in / Sign up

Export Citation Format

Share Document