scholarly journals Assessment of Changes in the Oral Microbiome That Occur in Dogs with Periodontal Disease

2021 ◽  
Vol 8 (12) ◽  
pp. 291
Author(s):  
Rodrigo Santibáñez ◽  
Camila Rodríguez-Salas ◽  
Carla Flores-Yáñez ◽  
Daniel Garrido ◽  
Pamela Thomson

The oral microbiome in dogs is a complex community. Under some circumstances, it contributes to periodontal disease, a prevalent inflammatory disease characterized by a complex interaction between oral microbes and the immune system. Porphyromonas and Tannerella spp. are usually dominant in this disease. How the oral microbiome community is altered in periodontal disease, especially sub-dominant microbial populations is unclear. Moreover, how microbiome functions are altered in this disease has not been studied. In this study, we compared the composition and the predicted functions of the microbiome of the cavity of healthy dogs to those with from periodontal disease. The microbiome of both groups clustered separately, indicating important differences. Periodontal disease resulted in a significant increase in Bacteroidetes and reductions in Actinobacteria and Proteobacteria. Porphyromonas abundance increased 2.7 times in periodontal disease, accompanied by increases in Bacteroides and Fusobacterium. It was predicted that aerobic respiratory processes are decreased in periodontal disease. Enrichment in fermentative processes and anaerobic glycolysis were suggestive of an anaerobic environment, also characterized by higher lipopolysaccharide biosynthesis. This study contributes to a better understanding of how periodontal disease modifies the oral microbiome and makes a prediction of the metabolic pathways that contribute to the inflammatory process observed in periodontal disease.

Author(s):  
E. S. Slazhneva ◽  
E. A. Tikhomirova ◽  
V. G. Atrushkevich

Relevance. The modern view of periodontitis as a dysbiotic disease that occurs as a result of changes in the microbial composition of the subgingival region is considered in a systematic review.Purpose. To study a new paradigm of development of generalized periodontitis.Materials and methods. Randomized controlled trials (RCTS) were selected for the study, including cluster RCTS, controlled (non-randomized) microbiological and clinical studies of the oral microbiome in adult patients with generalized periodontitis over the past 10 years.Results. The transition from a symbiotic microflora to a dysbiotic pathogenic community triggers the host's inflammatory response, which contributes to the development of periodontal diseases. Modern ideas about periodontal pathogenic bacteria dictate new requirements for the treatment of periodontal diseases. The second part of the review examines the microbial profiles of periodontal disease in various nosological forms, the mechanisms of the immune response and approaches to the treatment of periodontal disease from the perspective of biofilm infection.Conclusions. As follows from modern literature periodontitis is to a certain extent caused by the transition from a harmonious symbiotic bacterial community to a dysbiotic one. Recent scientific studies have shown that not single microorganism is not able to cause disease but the microbial community as a whole leads to the development of pathology.


Author(s):  
Nilgün Gültiken ◽  
Murat Yarim ◽  
Gül Fatma Yarim ◽  
Mahmut Sözmen ◽  
Elvan Anadol ◽  
...  

AbstractThe objective of this study was to investigate the plasma concentrations of insulin-like growth factor-2 (IGF-2) as well as its expression in the uterus and ovary of healthy dogs and those with cystic endometrial hyperplasia (CEH)–pyometra complex. Group 1 (n = 10) included bitches with open cervix pyometra, while Group 2 (n = 7) consisted of clinically healthy bitches in dioestrus. The number of IGF-2 immunopositive interstitial cells was significantly higher in Group 1, whereas in Group 2 there were only two cases in which a few cells were IGF-2 immunopositive. IGF-2 immunopositivity was observed in the endometrial glandular epithelium in both groups. Additionally, interstitial fibroblasts and macrophages in the endometrium were also positive in Group 1. The concentration of plasma IGF-2 was higher in Group 1 than in Group 2 (P < 0.05). The concentration was positively correlated with IGF-2 expression in the endometrial glands (r = 0.926; P < 0.001) in Group 1. However, a negative correlation was present between plasma IGF-2 concentration and IGF-2 expression in the interstitial endocrine cells of the ovary in Group 1 (r = −0.652; P < 0.05). The results suggest that IGF-2 plays an important role during the inflammatory process occurring in bitches with CEH–pyometra complex as well as in the endometrium of healthy bitches in dioestrus.


Author(s):  
Brook A. Niemiec ◽  
Jerzy Gawor ◽  
Shuiquan Tang ◽  
Aishani Prem ◽  
Janina A. Krumbeck

Abstract OBJECTIVE To compare the bacteriome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease. ANIMALS Dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease. PROCEDURES The maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the V1–V3 region of the 16S rRNA gene. RESULTS 714 bacterial species from 177 families were identified. The 3 most frequently found bacterial species were Actinomyces sp (48/51 samples), Porphyromonas cangingivalis (47/51 samples), and a Campylobacter sp (48/51 samples). The most abundant species were P cangingivalis, Porphyromonas gulae, and an undefined Porphyromonas sp. Porphyromonas cangingivalis and Campylobacter sp were part of the core microbiome shared among the 4 groups, and P gulae, which was significantly enriched in dogs with severe periodontal disease, was part of the core microbiome shared between all groups except dogs without periodontal disease. Christensenellaceae sp, Bacteroidales sp, Family XIII sp, Methanobrevibacter oralis, Peptostreptococcus canis, and Tannerella sp formed a unique core microbiome in dogs with severe periodontal disease. CONCLUSIONS AND CLINICAL RELEVANCE Results highlighted that in dogs, potential pathogens can be common members of the oral cavity bacteriome in the absence of disease, and changes in the relative abundance of certain members of the bacteriome can be associated with severity of periodontal disease. Future studies may aim to determine whether these changes are the cause or result of periodontal disease or the host immune response.


Author(s):  
Brook A. Niemiec ◽  
Jerzy Gawor ◽  
Shuiquan Tang ◽  
Aishani Prem ◽  
Janina A. Krumbeck

Abstract OBJECTIVE To investigate the mycobiome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease. ANIMALS 51 dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease. PROCEDURES The whole maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the internal transcribed spacer 2 region with a commercial sequencing platform. RESULTS Fungi were detected in all samples, with a total of 320 fungal species from 135 families detected in the data set. No single fungal species was found in all samples. The 3 most frequently found fungal species were Cladosporium sp (46/51 samples), Malassezia restricta (44/51 samples), and Malassezia arunalokei (36/51 samples). Certain fungi, specifically those of the family Didymellaceae, the family Irpicaceae, and the order Pleosporales, were significantly associated with different stages of periodontitis. Mycobial analysis indicated that Cladosporium sp could be considered part of the core oral cavity mycobiome. CONCLUSIONS AND CLINICAL RELEVANCE Results highlighted that fungi are present in the oral cavity of dogs and are characterized by substantial species diversity, with different fungal communities associated with various stages of periodontal disease. The next-generation DNA sequencing used in the present study revealed substantially more species of fungi than previous culture-based studies.


2021 ◽  
Vol 135 ◽  
pp. 409-419
Author(s):  
Wei Zhang ◽  
Anna M. Alessi ◽  
Sonia Heaven ◽  
James P.J. Chong ◽  
Charles J. Banks

2022 ◽  
Vol 23 (2) ◽  
pp. 846
Author(s):  
Stanislas Martin ◽  
Audrey Foulon ◽  
Wissam El Hage ◽  
Diane Dufour-Rainfray ◽  
Frédéric Denis

The study aimed to examine the impact of the oropharyngeal microbiome in the pathophysiology of schizophrenia and to clarify whether there might be a bidirectional link between the oral microbiota and the brain in a context of dysbiosis-related neuroinflammation. We selected nine articles including three systemic reviews with several articles from the same research team. Different themes emerged, which we grouped into 5 distinct parts concerning the oropharyngeal phageome, the oropharyngeal microbiome, the salivary microbiome and periodontal disease potentially associated with schizophrenia, and the impact of drugs on the microbiome and schizophrenia. We pointed out the presence of phageoma in patients suffering from schizophrenia and that periodontal disease reinforces the role of inflammation in the pathophysiology of schizophrenia. Moreover, saliva could be an interesting substrate to characterize the different stages of schizophrenia. However, the few studies we have on the subject are limited in scope, and some of them are the work of a single team. At this stage of knowledge, it is difficult to conclude on the existence of a bidirectional link between the brain and the oral microbiome. Future studies on the subject will clarify these questions that for the moment remain unresolved.


2020 ◽  
Vol 22 (100) ◽  
pp. 71-77
Author(s):  
N. M. Khomyn ◽  
A. R. Mysak ◽  
S. V. Tsisinska ◽  
V. V. Pritsak ◽  
N. V. Nazaruk ◽  
...  

Periodontal disease is known to be the most common and serious health problem in dogs today. Despite the rather large arsenal of medicinal substances, the problem of treatment and prevention of periodontal disease remains relevant. Based on this, the purpose of the work was to study the features of chronic catarrhal gingivitis and to develop an effective treatment regimen for dentistically ill dogs. For research, two groups of animals with chronic catarrhal gingivitis were formed in 5 dogs in each (control and experimental), selected on the principle of analogues in terms of age, character and localization of the inflammatory process. Animals of the control and experimental groups were performed tartar removal, irrigation of the oral cavity with water and drying of the mucosa with a sterile gauze swab. Dogs of the control group on the mucous membrane was applied 1 ml of septogel 2 times a day, and the experimental – argumentistin 2 times a day. Before and after the procedures on the mucous membrane was applied a 3 % solution of hydrogen peroxide. It was determined the prevalence of dental disease in dogs, the influence of microflora on the condition of the oral cavity of dogs with chronic catarrhal gingivitis, the clinical condition and the main indices and samples were studied, reflecting the intensity of the inflammatory process in the gums of sick dogs and was developed a method of treatment. The results of researches have shown that the use of argumentistin in the complex treatment of dogs with chronic catarrhal gingivitis helps to reduce the recovery period by 5 days.


2021 ◽  
Author(s):  
Damian Kao ◽  
Julie Yang ◽  
Sean Nisperos ◽  
Norma Drew ◽  
Polina Berezovskaya ◽  
...  

Variations in the microbial composition of the mouth (the oral microbiome) have known associations with dental and systemic disease. While this is relatively well understood in humans, research on this topic in companion animals, and in cats in particular, has been limited. In this study, we used oral microbiome data obtained from shotgun metagenomic sequencing of 38,000 cats (data gathered through a direct-to-consumer cat DNA testing platform) to reveal the staggering diversity of the feline oral microbiome, identifying 8,344 microbial species across the entire cohort. We used a subset of these data points (6,110 cats) to develop a feline dental health test able to assess whether a cat is at risk of having periodontal disease, tooth resorption and halitosis based on their oral microbiome. After filtering out classified microbial reads with low abundance, we were able to detect, on average, 606 microbes per oral microbiome sample, identifying not just bacteria, but also viruses, fungi, archaea and protozoa. Due to the shortage of available published research on the microbial signature of tooth resorption and halitosis in cats, we used our periodontal disease feline cohort (n=570) to validate our approach. We observed microbial compositional abundance trends consistent with previously reported findings from feline, canine and human studies on periodontal disease. We used compositional abundance-based statistical methods relying on pairwise log-ratio (PLR) transformation to identify microbes significantly correlated with each of the three dental conditions of interest. We identified a set of 27 microbes that are predictive for all three dental conditions, as well as microbes specifically predictive of periodontal disease, tooth resorption or halitosis. We used the compositional abundance profiles of predictive microbes to develop a risk score based model assessing the probability that a cat is suffering from each of the three dental conditions. The model had highest sensitivity for halitosis (72%) and highest specificity for tooth resorption (78%). Lastly, we observed relatively consistent dental disease risk profiles when we compared data from sample collection methods targeting the whole mouth versus those targeting the gum line specifically. In contrast, samples collected in triplicates from the same cats using a sampling method targeting the whole mouth showed more variation in the generated risk profiles. This was likely due to a failure to consistently collect sufficient sample material from areas of the mouth where microbes relevant to dental pathology would be found in highest amounts (i.e., the gum line). For this reason, we have modified the instructions of the test to emphasize the importance of targeting the gum line during sample collection. Regular at home or in clinic screening with the feline dental health test described in this study has the potential to facilitate early detection and prevention of dental disease.


Genetics ◽  
1972 ◽  
Vol 70 (1) ◽  
pp. 59-73 ◽  
Author(s):  
J C Francis ◽  
P E Hansche

ABSTRACT An experimental system for directing the evolution of enzymes and metabolic pathways in microbial populations is proposed and an initial test of its power is provided.—The test involved an attempt to genetically enhance certain functional properties of the enzyme acid phosphatase in S. cerevisiae by constructing an environment in which the functional changes desired would be "adaptive". Naturally occurring mutations in a population of 109 cells were automatically and continuously screened, over 1,000 generations, for their effect on the efficiency (Km) and activity of acid phosphatase at pH 6, and for their effect on the efficiency of orthophosphate metabolism.—The first adaptation observed, M1, was due to a single mutational event that effected a 30% increase in the efficiency of orthophosphate metabolism. The second, M2, effected an adaptive shift in the pH optimum of acid phosphatase and an increase in its activity over a wide range of pH values (an increment of 60% at pH 6). M2 was shown to result from a single mutational event in the region of the acid phosphatase structural gene. The third, M3, effected cell clumping, an adaptation to the culture apparatus that had no effect on phosphate metabolism.—The power of this system for directing the evolution of enzymes and of metabolic pathways is discussed in terms of the kinetic properties of the experimental system and in terms of the results obtained.


2012 ◽  
Vol 01 (02) ◽  
pp. 78-83 ◽  
Author(s):  
R Rajeev ◽  
Kanaram Choudhary ◽  
Swagatika Panda ◽  
Neha Gandhi

AbstractOral cancer is the most common cancer diagnosed in Indian men and is the leading cause of cancer deaths. It is considered as a multistep and multifactorial disease. Besides accumulation of genetic mutations, numerous other carcinogens are involved. In this category, viral and chemical carcinogens are well studied and documented. However, in the oral cavity, the role of microbiota in carcinogenesis is not known. Microbial populations on mouth mucosa differ between healthy and malignant sites, and certain oral bacterial species have been linked with malignancies, but the evidence is still weak in this respect. Nevertheless, oral microorganisms inevitably up-regulate cytokines and other inflammatory mediators that affect the complex metabolic pathways, and may thus be involved in carcinogenesis. Poor oral health associates statistically with prevalence of many types of cancer such as pancreatic and gastrointestinal cancer. This review presents possible carcinogenesis pathway involved in bacterial carcinogenesis, commonly implicated bacteria in oral carcinogenesis, and their role in cancer therapeutics as well.


Sign in / Sign up

Export Citation Format

Share Document