Analysis of flow field characteristics and structure optimization of the split-stream rushing muffler for diesel engine

2020 ◽  
Vol 68 (1) ◽  
pp. 101-111 ◽  
Author(s):  
He Su ◽  
Pei Wu ◽  
Jing Xue ◽  
Yongan Zhang ◽  
Haijun Zhang

In order to analyze the flow field characteristics of the split-stream rushing muffler, a theoretical model describing the velocity of the split streams is established and verified by the tracer test. For this new-principle muffler, the acoustic performance and the relationship between the velocity drop of the airflow and the pressure field are analyzed, also the structure optimization of the muffler is carried out based on the orthogonal test. Finally, a new muffler is fabricated based on the designing theory of this type of muffler for a prototype of diesel engine, and the comparative analyses are conducted compared with its original muffler. The results show that the establishment and analysis of the theoretical model for velocity during the split-streams rushing process are correct. In the frequency range of 0â–“1000 Hz, the average transmission loss of split-stream rushing muffler is better than that of the original muffler. While the speed of airflow is reduced by split-streams rushing, a certain pressure loss is caused at the same time, which is about 50% of total pressure loss of the muffler, and the average fluid resistance coefficient of the split-stream rushing process is 0.91. Compared to the original muffler of the sample engine, the average insertion loss of the optimized new muffler is increased by 61.2%. At inlet air velocity of 30 m/s, the pressure loss is reduced by 16.8%. The results provide a potential for practical engineering application of this new split-stream rushing muffler in future.

2018 ◽  
Vol 37 (4) ◽  
pp. 816-833 ◽  
Author(s):  
Fu Jun ◽  
Zhang ZengFeng ◽  
Chen Wei ◽  
Mao Hong ◽  
Li JianXing

The purpose of this paper is to improve the emission performance of diesel engines. A novel exhaust purification muffler was proposed and designed. The flow field characteristics of the exhaust purification muffler were studied based on the finite volume method, the pressure loss of the exhaust purification muffler was 3315 Pa, and the pressure loss of the exhaust purification muffler was just 2% higher than the original muffler. Then, a three-dimensional numerical simulation model was established and used to investigate the effect of different expansion ratio, cavity length ratio, and ratio of length to diameter on the flow field characteristics in an exhaust purification muffler of diesel engine. The study was shown that the porous media (ceramic foam) had a great influence on the flow field distribution, where the air flow velocity was stable and the pressure distribution was trapezoidal, having a good pressure reduction and deceleration effect. With the increase of the expansion ratio parameter, the airflow cross-section area changed when air entered into the inlet silencing cavity, which had great influence on the velocity field and the pressure loss. Because of the improvement of cavity length ratio parameter, the flowing distance in the inlet silencing increased, which caused more local turbulence and pressure fluctuation. Also with the increase of the ratio of length to diameter parameter, the volume of inlet silencing chamber and the air flow space increased. The change of the structural parameters of each scheme had a certain influence on the pressure loss. The maximum pressure loss changing value among the expansion ratio schemes was 878 Pa, then the maximum pressure loss changing value among the cavity length ratio schemes was 328 Pa, and it was 89 Pa among the cavity length ratio schemes. The pressure loss caused by the expansion ratio parameter changed greatly, and the pressure loss changing value caused by the change of the cavity length ratio parameter and the ratio of length to diameter parameter was relatively small. In this paper, a muffler which contained a ceramic foam and had the functions of exhaust soot purification and noise elimination was supplied. The effects of the structure factors on flow field characteristics were studied. The guidance for the design and improvement of muffler is able to be supplied in this paper.


Author(s):  
Yuki Toda ◽  
Masataka Morimatsu ◽  
Yu Nishio ◽  
Takanobu Ogawa

Abstract A tube-type gas burner consists of a straight tube with a slit along it and discharges an air-gas mixture through the slit to produce a flame. The flow velocity from the slit depends on the pressure in the tube and the pressure loss at the slit, and it varies in the longitudinal direction of the tube. The resulting uneven flame degrades the quality of the burner. In this study, we develop a one-dimensional theoretical model of the flow in a tube with a slit. To validate the result of the theoretical model, we also conduct experiments and numerical simulations for the same flow field. We applied this theoretical model to a flow in a tube, 1 m length, 40 mm in diameter, with a slit 2.5 mm wide. The end of the tube is closed. We also discuss the effect of the length of the burner on the unevenness.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1052
Author(s):  
Rongjiang Tang ◽  
Hongbin He ◽  
Zengjun Lu ◽  
Shenfang Li ◽  
Enyong Xu ◽  
...  

When a commercial vehicle is driving with the sunroof open, it is easy for the problem of sunroof buffeting noise to occur. This paper establishes the basis for the design of a commercial vehicle model that solves the problem of sunroof buffeting noise, which is based on computational fluid dynamics (CFD) numerical simulation technology. The large eddy simulation (LES) method was used to analyze the characteristics of the buffeting noise with different speed conditions while the sunroof was open. The simulation results showed that the small vortex generated in the cab forehead merges into a large vortex during the backward movement, and the turbulent vortex causes a resonance response in the cab cavity as the turbulent vortex moves above the sunroof and falls into the cab. Improving the flow field characteristics above the cab can reduce the sunroof buffeting noise. Focusing on the buffeting noise of commercial vehicles, it is proposed that the existing accessories, including sun visors and roof domes, are optimized to deal with the problem of sunroof buffeting noise. The sound pressure level of the sunroof buffeting noise was reduced by 6.7 dB after optimization. At the same time, the local pressure drag of the commercial vehicle was reduced, and the wind resistance coefficient was reduced by 1.55% compared to the original commercial vehicle. These results can be considered as relevant, with high potential applicability, within this field of research.


2017 ◽  
Vol 36 (5) ◽  
pp. 989-1005
Author(s):  
Chengzheng Cai ◽  
Feng Gao ◽  
Zhongwei Huang ◽  
Yugui Yang

With the rapid progress of petroleum engineering, liquid nitrogen jet is expected to be used for perforation and jet fracturing, and then provide a new method for unconventional reservoirs efficient development. In order to research the flow field characteristics and evaluate the impact capability of liquid nitrogen jet, a computation fluid dynamic model was built by coupling the nitrogen physical property equations to simulate the flow field of liquid nitrogen jet. The results indicated that given the same simulation conditions, the impact pressure of liquid nitrogen jet was equivalent to that of water jet. The liquid nitrogen jet presented more excellent impact capability than water jet because of its higher axial and radial velocities. The impact capability of liquid nitrogen jet increased with the growth of nozzle pressure drop and nozzle diameter, decreased with the increasing of standoff distance, and was slightly influenced by fluid temperature. The confining pressure hardly affected the impact capability of liquid nitrogen jet, so it can be neglected in the engineering application. This study uncovered the flow field characteristics of liquid nitrogen jet and could provide theoretical guidance for the application of perforation and fracturing with liquid nitrogen jet.


2021 ◽  
Vol 261 ◽  
pp. 02040
Author(s):  
Bo Zhang ◽  
Ping Zhang ◽  
Zhao Zhang ◽  
Shaobo Yang ◽  
Chengli Wang ◽  
...  

In order to evaluate the flow field characteristics of a marine diesel engine cooling water jacket, and provide a theoretical basis for further optimizing the water jacket structure. A computational fluid dynamics (CFD) method was used to calculate the three-dimensional flow field of the water jacket. Based on the CFD simulation model of the engine water jacket, the analysis of pressure field, velocity field, streamline distribution and flow uniformity of water jacket of diesel engine under rated condition were carried out. The results show that: the total pressure loss of water jacket is 30.3 kPa, in which the pressure loss of cylinder block is 8.4 kPa, and the one of cylinder head and outlet manifold is 21.9 kPa, which indicates that the flow resistance design of the cylinder block and head is reasonable; the flow rate of coolant in the nose zone of cylinder head is above 1.5 m/s, which meets the cooling demand of cylinder head; the cooling water flows circumferentially in the engine block water jacket, and the flow dead zones are easily formed by the mutual extrusion and collision of the water flows; the outlet of the cylinder head water jacket is connected with the outlet manifold at right angle, which leads to large energy loss of the flow field; the maximum non-uniformity of flow rate of water jacket of each cylinder is 5.85%, which can be further optimized by adjusting the position of water jacket inlet.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Junfeng Sun ◽  
Meihong Liu ◽  
Zhen Xu ◽  
Taohong Liao ◽  
Xiangping Hu ◽  
...  

A new type of cylindrical gas film seal (CGFS) with a flexible support is proposed according to the working characteristics of the fluid dynamic seal in high-rotational-speed fluid machinery, such as aero-engines and centrifuges. Compared with the CGFS without a flexible support, the CGFS with flexible support presents stronger radial floating characteristics since it absorbs vibration and reduces thermal deformation of the rotor system. Combined with the structural characteristics of a film seal, an analytical model of CGFS with a flexible wave foil is established. Based on the fluid-structure coupling analysis method, the three-dimensional flow field of a straight-groove CGFS model is simulated to study the effects of operating and structural parameters on the steady-state characteristics and the effects of gas film thickness, eccentricity, and the number of wave foils on the equivalent stress of the flexible support. Simulation results show that the film stiffness increases significantly when the depth of groove increases. When the gas film thickness increases, the average equivalent stress of the flexible support first decreases and then stabilizes. Furthermore, the number of wave foils affects the average foils thickness. Therefore, when selecting the number of wave foils, the support stiffness and buffer capacity should be considered simultaneously.


Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 79
Author(s):  
Yuekan Zhang ◽  
Jiangbo Ge ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Junru Yang ◽  
...  

In view of the difficulty of traditional hydrocyclones to meet the requirements of fine classification, a double-overflow three-product (internal overflow, external overflow and underflow) hydrocyclone was designed in this study. Numerical simulation and experimental research methods were used to investigate the effects of double-overflow flow field characteristics and structural parameters (i.e., internal vortex finder diameter and insertion depth) on separation performance. The research results showed that the larger the diameter of the internal vortex finder, the greater the overflow yield and the larger the cut size. The finest internal overflow product can be obtained when the internal vortex finder is 30 mm longer than the external vortex finder. The separation efficiency is highest when the internal vortex finder is 30 mm shorter than the external vortex finder.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 475
Author(s):  
Yin-An Wang ◽  
Xiao-Peng Xie ◽  
Xiao-Hui Lu

Spray painting robots equipped with air spray guns have been widely used in the painting industry. In view of the low efficiency of single-nozzle air spray guns when spraying large targets, a new double-nozzle air spray gun structure was designed in this paper based on the Coanda effect of double jets. Firstly, a 3-D physical model of the double-nozzle air spray gun was built in Solidworks, in which unstructured grids were generated for the computational domain by ICEM. Secondly, the spray painting process was numerically modeled with the help of the computational fluid dynamics (CFD) software ANSYS-Fluent 16.0. The two-phase spray flow was calculated by coupling a discrete phase model (DPM) and the Taylor analogy breakup (TAB) method. The TAB model was applied to predict the secondary break-up. The DPM model was applied to predict the droplet trajectories. The geometry of an air spray gun has a significant influence on the spray flow field characteristics. The influence of the air spray gun geometry on the interference spray flow field characteristics and coating film thickness distribution were investigated by changing the values of the distance between the centers of the two paint holes (L) and the angle between the axes of the two paint holes (θ). Numerical results show that the smaller L and θ are, the stronger the interference effect between the two jets, while the more concentrated the paint is in the central region of the target surface, the easier it is for overspray to occur. With increasing L and θ, the interference effect gradually decreased and the extension distance of the coating film along the x-axis gradually increased. However, if L and θ are too large, the interference effect will become too weak and the shape of the coating film will become a concave, with more paint on both side regions and less paint in the central region, which will cause an uneven coating film. From the simulation results, it can be concluded that a more uniform coating film can be obtained when L = 30 mm and θ = 10°. The effective coating width of the double-nozzle air spray gun was increased by 85.7% compared with the single-nozzle air spray gun, which improved the spraying efficiency.


Sign in / Sign up

Export Citation Format

Share Document