Assessment of inter-IC sound microelectromechanical systems microphones for soundscape reporting

2021 ◽  
Vol 263 (4) ◽  
pp. 2259-2269
Author(s):  
Trevor Wong ◽  
Bhan Lam ◽  
Furi Andi Karnapi ◽  
Kenneth Ooi ◽  
Woon-Seng Gan

Acoustic parameters obtained from calibrated acoustic equipment are part of the minimum soundscape reporting requirements as stated in Annex A of ISO 12913-2. To dynamically monitor the acoustic environment of a large area, a large network of acoustic sensors could be deployed, albeit at significant cost. Micro-Electro-Mechanical Systems (MEMS) microphones offer compact, low-cost and high-performance alternatives to traditional analog microphones. In particular, the use of Inter-IC Sound (IS) communication allows MEMS microphones to be conveniently used in concert with I2S output interfaces for sound actuation. The performance of several IS MEMS Microphones was compared to that of an IEC 61094-4:1996 WS2F microphone in an anechoic chamber and a series of digital filters was designed to compensate for the differences in frequency response. The noise floor, compensated frequency response, acoustic parameter accuracy of IS MEMS were evaluated and recommendations regarding the suitability of the IS MEMS were provided.

2012 ◽  
Vol 81 ◽  
pp. 65-74 ◽  
Author(s):  
Jacopo Iannacci ◽  
Giuseppe Resta ◽  
Paola Farinelli ◽  
Roberto Sorrentino

MEMS (MicroElectroMechanical-Systems) technology applied to the field of Radio Frequency systems (i.e. RF-MEMS) has emerged in the last 10-15 years as a valuable and viable solution to manufacture low-cost and very high-performance passive components, like variable capacitors, inductors and micro-relays, as well as complex networks, like tunable filters, reconfigurable impedance matching networks and phase shifters, and so on. The availability of such components and their integration within RF systems (e.g. radio transceivers, radars, satellites, etc.) enables boosting the characteristics and performance of telecommunication systems, addressing for instance a significant increase of their reconfigurability. The benefits resulting from the employment of RF-MEMS technology are paramount, being some of them the reduction of hardware redundancy and power consumption, along with the operability of the same RF system according to multiple standards. After framing more in detail the whole context of RF MEMS technology, this paper will provide a brief introduction on a typical RF-MEMS technology platform. Subsequently, some relevant examples of lumped RF MEMS passive elements and complex reconfigurable networks will be reported along with their measured RF performance and characteristics.


Author(s):  
Raquel Pinto ◽  
André Cardoso ◽  
Sara Ribeiro ◽  
Carlos Brandão ◽  
João Gaspar ◽  
...  

Microelectromechanical Systems (MEMS) are a fast growing technology for sensor and actuator miniaturization finding more and more commercial opportunities by having an important role in the field of Internet of Things (IoT). On the same note, Fan-out Wafer Level Packaging (FOWLP), namely WLFO technology of NANIUM, which is based on Infineon/ Intel eWLB technology, is also finding further applications, not only due to its high performance, low cost, high flexibility, but also due to its versatility to allow the integration of different types of components in the same small form-factor package. Despite its great potential it is still off limits to the more sensitive components as micro-mechanical devices and some type of sensors, which are vulnerable to temperature and pressure. In the interest of increasing FOWLP versatility and enabling the integration of MEMS, new methods of assembling and processing are continuously searched for. Dielectrics currently used for redistribution layer construction need to be cured at temperatures above 200°C, making it one of the major boundary for low temperature processing. In addition, in order to accomplish a wide range of dielectric thicknesses in the same package it is often necessary to stack very different types of dielectrics with impact on bill of materials complexity and cost. In this work, done in cooperation with the International Iberian Nanotechnology Laboratory (INL), we describe the implementation of commercially available SU-8 photoresist as a structural material in FOWLP, allowing lower processing temperature and reduced internal package stress, thus enabling the integration of components such as MEMS/MOEMS, magneto-resistive devices and micro-batteries. While SU-8 photoresist was first designed for the microelectronics industry, it is currently highly used in the fabrication of microfluidics as well as microelectromechanical systems (MEMS) and BIO-MEMS due to its high biocompatibility and wide range of available thicknesses in the same product family. Its good thermal and chemical resistance and also mechanical and rheological properties, make it suitable to be used as a structural material, and moreover it cures at 150°C, which is key for the applications targeted. Unprecedentedly, SU-8 photoresist is tested in this work as a structural dielectric for the redistribution layers on 300mm fan-out wafers. Main concerns during the evaluation of the new WLFO dielectric focused on processability quality; adhesion to multi-material substrate and metals (copper, aluminium, gold, ¦); between layers of very different thicknesses; and overall reliability. During preliminary runs, processability on 300 mm fan-out wafers was evaluated by testing different coating and soft bake conditions, exposure settings, post-exposure parameters, up to developing setup. The outputs are not only on process conditions and results but also on WLFO design rules. For the first time, a set of conditions has been defined that allows processing SU-8 on WLFO, with thickness values ranging from 1 um to 150 um. The introduction of SU-8 in WLFO is a breakthrough in this fast-growing advanced packaging technology platform as it opens vast opportunities for sensor integration in WLP technology.


2021 ◽  
Author(s):  
Ankur Gupta

Swiftly emerging research prospects in the Micro-Electro-Mechanical System (MEMS) enable to build of complex and sophisticated microstructures on a substrate containing moving masses, cantilevers, flexures, levers, linkages, dampers, gears, detectors, actuators, and many more on a single chip. One of the MEMS initial products that emerged into the micro-system technology is the MEMS pressure sensor. Because of their high performance, low cost, and compact size, these sensors are extensively being adopted in numerous applications viz., aerospace, automobile, and bio-medical domain, etc. These application requirements drive and impose tremendous conditions on sensor design to overcome the tedious design and fabrication procedure before its reality. MEMS-based pressure sensors enable a wide range of pressure measurements as per the application requirements. Considering its vast utility in industries, this paper presents a detailed review of MEMS-based pressure sensors and their wide area of applications, their design aspects, and challenges, to provide state of an art gist to the researchers of a similar domain in one place.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Adamos Christou ◽  
Fengyuan Liu ◽  
Ravinder Dahiya

AbstractPrinting is a promising method for the large-scale, high-throughput, and low-cost fabrication of electronics. Specifically, the contact printing approach shows great potential for realizing high-performance electronics with aligned quasi-1D materials. Despite being known for more than a decade, reports on a precisely controlled system to carry out contact printing are rare and printed nanowires (NWs) suffer from issues such as location-to-location and batch-to-batch variations. To address this problem, we present here a novel design for a tailor-made contact printing system with highly accurate control of printing parameters (applied force: 0–6 N ± 0.3%, sliding velocity: 0–200 mm/s, sliding distance: 0–100 mm) to enable the uniform printing of nanowires (NWs) aligned along 93% of the large printed area (1 cm2). The system employs self-leveling platforms to achieve optimal alignment between substrates, whereas the fully automated process minimizes human-induced variation. The printing dynamics of the developed system are explored on both rigid and flexible substrates. The uniformity in printing is carefully examined by a series of scanning electron microscopy (SEM) images and by fabricating a 5 × 5 array of NW-based photodetectors. This work will pave the way for the future realization of highly uniform, large-area electronics based on printed NWs.


2013 ◽  
Vol 1553 ◽  
Author(s):  
R. A. Sporea ◽  
S. Georgakopoulos ◽  
X. Xu ◽  
X. Guo ◽  
M. Shkunov ◽  
...  

ABSTRACTIn order to achieve high performance, the design of devices for large-area electronics needs to be optimized despite material or fabrication shortcomings. In numerous emerging technologies thin-film transistor (TFT) performance is hindered by contact effects. Here, we show that contact effects can be used constructively to create devices with performance characteristics unachievable by conventional transistor designs. Source-gated transistors (SGTs) are not designed with increasing transistor speed, mobility or sub-threshold slope in mind, but rather with improving certain aspects critical for real-world large area electronics such as stability, uniformity, power efficiency and gain. SGTs can achieve considerably lower saturation voltage and power dissipation compared to conventional devices driven at the same current; higher output impedance for over two orders of magnitude higher intrinsic gain; improved bias stress stability in amorphous materials; higher resilience to processing variations; current virtually independent of source-drain gap, source-gate overlap and semiconductor thickness variations. Applications such as amplifiers and drivers for sensors and actuators, low cost large area analog or digital circuits could greatly benefit from incorporating the SGT architecture.


2009 ◽  
Vol 1164 ◽  
Author(s):  
Pin Yang ◽  
F. Patrick Doty ◽  
Mark A. Rodriguez ◽  
Margaret R. Sanchez ◽  
Xiaowong Zhou ◽  
...  

AbstractLow-cost, high-performance gamma-ray spectrometers are urgently needed for nonproliferation and homeland security applications. Available scintillation materials fall short of the requirements for energy resolution and sensitivity at room temperature. The emerging lanthanide halide based materials, while having the desired luminosity and proportionality, have proven difficult to produce in the large sizes and low cost required due to highly anisotropic properties caused by the non-cubic crystal structure. New cubic materials, such as the recently discovered elpasolite family (A2BLnX6; Ln-lanthanide and X-halogen), hold promise for scintillator materials due to their high light output, proportionality, and toughness. The isotropic nature of the cubic elpasolites leads to minimal thermomechanical stresses during single-crystal solidification, and eliminates the problematic light scattering at the grain boundaries. Therefore, it may be possible to produce these materials in large sizes as either single crystals or transparent ceramics with high production yield and reduced costs. In this study, we investigated the “cubic” elpasolite halide synthesis and studied the structural variations of four different compounds, including Cs2NaLaBr6, Cs2LiLaBr6, Cs2NaLaI6, and Cs2LiLaI6. Attempts to produce a large-area detector by a hot forging technique were explored.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 386
Author(s):  
Simone M. P. Meroni ◽  
Carys Worsley ◽  
Dimitrios Raptis ◽  
Trystan M. Watson

Perovskite solar cells (PSCs) have already achieved comparable performance to industrially established silicon technologies. However, high performance and stability must be also be achieved at large area and low cost to be truly commercially viable. The fully printable triple-mesoscopic carbon perovskite solar cell (mCPSC) has demonstrated unprecedented stability and can be produced at low capital cost with inexpensive materials. These devices are inherently scalable, and large-area modules have already been fabricated using low-cost screen printing. As a uniquely stable, scalable and low-cost architecture, mCPSC research has advanced significantly in recent years. This review provides a detailed overview of advancements in the materials and processing of each individual stack layer as well as in-depth coverage of work on perovskite formulations, with the view of highlighting potential areas for future research. Long term stability studies will also be discussed, to emphasise the impressive achievements of mCPSCs for both indoor and outdoor applications.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000935-000939
Author(s):  
Yiliang Wu ◽  
Ping Liu ◽  
Tony Wigglesworth

Printable conductors with high conductivity would be critical for low-cost printed electronics. In view of printability, conductivity, and electrical stability, metal such as gold or silver derived from solution-deposited precursor compositions would be an ideal candidate. Xerox has been exploring the use of silver nanoparticles as conductor precursor composition for printed electronics. This paper reviews our research in the development of alkylamine-stabilized silver nanoparticles that can be sintered at low temperature (∼ 120 °C) for high conductivity (>10000 S/cm). Silver nanoparticle ink formulations based on these silver nanoparticles exhibit surface-energy independent printability which enables the fabrication of high-performance top-contact transistor devices, and self-assembly characteristic when printed on hydrophilic substrates which allows for large-area, defect-free source drain arrays to be printed with a narrow and uniform channel length.


Author(s):  
Christoph Sosna ◽  
Rainer Buchner ◽  
Walter Lang ◽  
Wolfgang Benecke ◽  
Christian Boehm ◽  
...  

In this paper a feasibility study of a micromachined PQT-sensor for measurement of pressure (P), flow rate (Q), and temperature (T) for diagnostic applications in pneumatic systems is presented. As a low cost device this innovative PQT-sensor has to fulfill different kinds of criteria such as wide measuring range, fast response time, high resolution and high accuracy for diagnosing the health status of a pneumatic system. By using micro electro mechanical systems (MEMS) technologies small high-performance sensors were fabricated which fulfill all these criteria. At first, principles will be described that have been chosen for measurement of pressure, flow and temperature that will be used for the PQT-sensor. A design proposal for the sensor will be presented and verified with analytical calculations to show its applicability.


Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 162 ◽  
Author(s):  
Issraa Shahine ◽  
Nour Beydoun ◽  
Jean Jacques Gaumet ◽  
El-Eulmi Bendeif ◽  
Hervé Rinnert ◽  
...  

Here, we demonstrate for the first time a strategy to self-assemble ZnO nanoparticles (NP) on a large area by a facile one-step process. First, rough and random ZnO nanocrystals (NC), were produced by free-stabilizing aqueous synthesis. Therefore, a post thermal treatment at various temperatures ranging from 80 to 800 °C was necessary to obtain size-tunable and photoluminescent crystalline NP. The fabricated NP had both efficient UV photoluminescence and photocatalytic activity by photo-degradation of Methylene Blue (MB) dye. The annealed NP showed an absorption blue shift in the UV region with decreasing size. This shift was attributed to high quantum confinement effect since ZnO NP diameter reached values lower than the Bohr radius of ZnO (~2.7 nm). The photocatalytic activity displayed dependency on the particle’s size, number, and crystallinity. Subsequently, the NP were self-assembled inside poly(methyl methacrylate) (PMMA) nanoholes. Subsequently, large area substrate of homogenous properties ZnO NP was obtained. Moreover, the synthesis facility, photoemission and photocatalytic properties of ZnO NP could be a new insight into the realization of high performance and low cost UV laser devices.


Sign in / Sign up

Export Citation Format

Share Document