Faculty Opinions recommendation of Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system.

Author(s):  
David Lombard
Aging Cell ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 28-38 ◽  
Author(s):  
Sebastian I. Arriola Apelo ◽  
Joshua C. Neuman ◽  
Emma L. Baar ◽  
Faizan A. Syed ◽  
Nicole E. Cummings ◽  
...  

2016 ◽  
Vol 64 (4) ◽  
pp. 932.2-933
Author(s):  
S Arriola Apelo ◽  
CP Pumper ◽  
EL Baar ◽  
NE Cummings ◽  
HK Brar ◽  
...  

Inhibition of the mechanistic Target Of Rapamycin (mTOR) signaling pathway by the FDA-approved drug rapamycin promotes lifespan in numerous model organisms and delays age-related disease in mice. However, the utilization of rapamycin as a therapy for age-related diseases will likely prove challenging due to the serious metabolic and immunological side effects of rapamycin in humans. While the beneficial effects of rapamycin are largely mediated by inhibition of mTOR complex 1 (mTORC1), which is acutely sensitive to rapamycin, many of the negative side effects are mediated by inhibition of mTOR complex 2 (mTORC2), which is chronically sensitive to rapamycin. We hypothesized that a more relaxed rapamycin dosing schedule or the use of rapamycin analogs might specifically target mTORC1, reducing mTORC2 mediated side effects and still promoting longevity. Here, we identified an intermittent rapamycin treatment regimen – 2 mg/kg administered every five days – with reduced impact on glucose metabolism and the immune system compared to daily rapamycin treatment. Further, we show that the FDA-approved rapamycin analogs everolimus and temsirolimus efficiently inhibit mTORC1 signaling while having a reduced impact on glucose metabolism compared to rapamycin. Finally, we find that intermittent rapamycin administration extends the lifespan of mice even to a greater degree than continuous fed rapamycin.First, we tested in C57BL/6J mice, an inbred mouse line of which of which the lifespan can be extended by rapamycin, several intermittent dosing regimens and determined that IP administration of rapamycin once every 5 days was the most intensive dosing routing with no significant impact on glucose tolerance. We analyzed the impact of intermittent rapamycin administration on glucose homeostasis and determined that compared to daily treatment, intermittent rapamycin has reduced pyruvate intolerance (impaired gluconeogensis regualtion). Surprisingly, intermittent rapamycin resulted in similar fasting plasma insulin, insulin sensitivity, and ex vivo insulin secretion than vehicle treatment. We also determined that intermittent rapamycin has reduced impact on the immune system compared to daily rapamycin, as indicated by spleen T regulatory cells percent. We analyzed the effect of intermittent rapamycin on mTOR signaling and observed a sustained impact of this dosing routine on adipose, but not muscle, mTORC1 downstream marker S6 (S240/244) phosphorylation after 5 days of treatment. Remarkable, we observed no impact of intermittent rapamycin on the mTORC2 substrate Akt (S473) phosphorylation on either tissue. We compared the impact of daily treatment with equimolar doses of the FDA-approved rapamycin analogs everolimus and temsirolimus on glucose homeostasis. Despite both analogs had similar reduction on muscle mTORC1 signaling than rapamycin, they had improved glucose tolerance. In addition, everolimus had improved pyruvate tolerance, reduced testis weight loss, and reduced inhibition of mTORC2 signaling in muscle. Our results suggest that many of the negative side effects of rapamycin treatment can be mitigated through intermittent dosing or the use of rapamycin analogs, yet still extend lifespan. Therefore, we analyzed the impact of every 5 days rapamycin administration on longevity when treatment started at 20 months of age. Fascinatingly, intermittent rapamycin extended median and maximum lifespan compared to vehicle treated mice, with minimum impact on metabolism.Our work demonstrates that the anti-aging potential of rapamycin is separable from many of its negative side-effects, and suggests that carefully designed dosing regimens may permit the safer use of rapamycin and its analogs for the treatment of age-related diseases in humans.


2020 ◽  
Vol 15 (3) ◽  
pp. 187-201 ◽  
Author(s):  
Sunil K. Dubey ◽  
Amit Alexander ◽  
Munnangi Sivaram ◽  
Mukta Agrawal ◽  
Gautam Singhvi ◽  
...  

Damaged or disabled tissue is life-threatening due to the lack of proper treatment. Many conventional transplantation methods like autograft, iso-graft and allograft are in existence for ages, but they are not sufficient to treat all types of tissue or organ damages. Stem cells, with their unique capabilities like self-renewal and differentiate into various cell types, can be a potential strategy for tissue regeneration. However, the challenges like reproducibility, uncontrolled propagation and differentiation, isolation of specific kinds of cell and tumorigenic nature made these stem cells away from clinical application. Today, various types of stem cells like embryonic, fetal or gestational tissue, mesenchymal and induced-pluripotent stem cells are under investigation for their clinical application. Tissue engineering helps in configuring the stem cells to develop into a desired viable tissue, to use them clinically as a substitute for the conventional method. The use of stem cell-derived Extracellular Vesicles (EVs) is being studied to replace the stem cells, which decreases the immunological complications associated with the direct administration of stem cells. Tissue engineering also investigates various biomaterials to use clinically, either to replace the bones or as a scaffold to support the growth of stemcells/ tissue. Depending upon the need, there are various biomaterials like bio-ceramics, natural and synthetic biodegradable polymers to support replacement or regeneration of tissue. Like the other fields of science, tissue engineering is also incorporating the nanotechnology to develop nano-scaffolds to provide and support the growth of stem cells with an environment mimicking the Extracellular matrix (ECM) of the desired tissue. Tissue engineering is also used in the modulation of the immune system by using patient-specific Mesenchymal Stem Cells (MSCs) and by modifying the physical features of scaffolds that may provoke the immune system. This review describes the use of various stem cells, biomaterials and the impact of nanotechnology in regenerative medicine.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3746
Author(s):  
Magdalena Polak-Śliwińska ◽  
Małgorzata Tańska

The benefits of natural honeybee products (e.g., honey, royal jelly, beeswax, propolis, beevenom and pollen) to the immune system are remarkable, and many of them are involved in the induction of antibody production, maturation of immune cells and stimulation of the immune system. The type of plants in the geographical area, climatic conditions and production method have a significantly influence on the nutritional quality of honey. However, this variability can influence consumer liking by the sensory attributes of the product. The aim of this work was to compare the most popular honeys from Poland in terms of nutritional value, organoleptic properties and antioxidant activity. In the study, five varieties of honey (honeydew, forest, buckwheat, linden and dandelion) from conventional and organic production methods were tested. The nutritional characteristics of honey samples included acidity, content of water, sugars, vitamin C, HMF and phenolics (total and flavonoids), while honey color, taste, aroma and consistency were investigated in the organoleptic characteristics. The antioxidant activity was determined in water- and ethanol-soluble honey extracts using DPPH and ORAC tests. The results showed that organoleptic and nutritional characteristics of popular Polish honeys differ significantly in relation to plant source and production method. The significant effect of honey variety on the content of HMF, saccharose and phenolics, as well as acidity and antioxidant capacity were noted. The impact of variety and variety × production method interaction was significant in the case of the content of vitamin C, glucose and fructose. A visible difference of buckwheat and forest honeys from other samples was observed. The highest content of total phenolics with antioxidant activity based on the SET mechanism was found in buckwheat honeys, while forest honeys were richer in flavonoids.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 584
Author(s):  
Natalia Nunez ◽  
Louis Réot ◽  
Elisabeth Menu

Interactions between the immune system and the microbiome play a crucial role on the human health. These interactions start in the prenatal period and are critical for the maturation of the immune system in newborns and infants. Several factors influence the composition of the infant’s microbiota and subsequently the development of the immune system. They include maternal infection, antibiotic treatment, environmental exposure, mode of delivery, breastfeeding, and food introduction. In this review, we focus on the ontogeny of the immune system and its association to microbial colonization from conception to food diversification. In this context, we give an overview of the mother–fetus interactions during pregnancy, the impact of the time of birth and the mode of delivery, the neonate gastrointestinal colonization and the role of breastfeeding, weaning, and food diversification. We further review the impact of the vaccination on the infant’s microbiota and the reciprocal case. Finally, we discuss several potential therapeutic interventions that might help to improve the newborn and infant’s health and their responses to vaccination. Throughout the review, we underline the main scientific questions that are left to be answered and how the non-human primate model could help enlighten the path.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
K Apostolidis

Abstract The speaker will present the perspective of the cancer patients, and the challenges they encounter across the spectrum of care and what measures they consider relevant in terms of prevention, diagnosis, treatment and, indeed, to raise awareness of the impact of AMR on rendering cancer treatments ineffective. She will elaborate on survivorship, and on the impact of AMR on the quality of life of patients, their carers, and families. Emphasis will be given on the implications of modern therapies, such as immunotherapy, representing a unique challenge in terms of better understanding the effect on overall health of patients, with the effect they have the immune system, further weakening the patient and leaving him/her exposed to infections potentially of higher risk than cancer itself.


2021 ◽  
pp. 1-19
Author(s):  
Sonia George ◽  
Trevor Tyson ◽  
Nolwen L. Rey ◽  
Rachael Sheridan ◽  
Wouter Peelaerts ◽  
...  

Background: α-Synuclein (α-syn) is the predominant protein in Lewy-body inclusions, which are pathological hallmarks of α- synucleinopathies, such as Parkinson’s disease (PD) and multiple system atrophy (MSA). Other hallmarks include activation of microglia, elevation of pro-inflammatory cytokines, as well as the activation of T and B cells. These immune changes point towards a dysregulation of both the innate and the adaptive immune system. T cells have been shown to recognize epitopes derived from α-syn and altered populations of T cells have been found in PD and MSA patients, providing evidence that these cells can be key to the pathogenesis of the disease. Objective To study the role of the adaptive immune system with respect to α-syn pathology. Methods: We injected human α-syn preformed fibrils (PFFs) into the striatum of immunocompromised mice (NSG) and assessed accumulation of phosphorylated α-syn pathology, proteinase K-resistant α-syn pathology and microgliosis in the striatum, substantia nigra and frontal cortex. We also assessed the impact of adoptive transfer of naïve T and B cells into PFF-injected immunocompromised mice. Results: Compared to wildtype mice, NSG mice had an 8-fold increase in phosphorylated α-syn pathology in the substantia nigra. Reconstituting the T cell population decreased the accumulation of phosphorylated α-syn pathology and resulted in persistent microgliosis in the striatum when compared to non-transplanted mice. Conclusion: Our work provides evidence that T cells play a role in the pathogenesis of experimental α-synucleinopathy.


2020 ◽  
Vol 9 (1) ◽  
pp. 192 ◽  
Author(s):  
Alexandre Quilbe ◽  
Olivier Moralès ◽  
Martha Baydoun ◽  
Abhishek Kumar ◽  
Rami Mustapha ◽  
...  

To date, pancreatic adenocarcinoma (ADKP) is a devastating disease for which the incidence rate is close to the mortality rate. The survival rate has evolved only 2–5% in 45 years, highlighting the failure of current therapies. Otherwise, the use of photodynamic therapy (PDT), based on the use of an adapted photosensitizer (PS) has already proved its worth and has prompted a growing interest in the field of oncology. We have developed a new photosensitizer (PS-FOL/PS2), protected by a recently published patent (WO2019 016397-A1, 24 January 2019). This photosensitizer is associated with an addressing molecule (folic acid) targeting the folate receptor 1 (FOLR1) with a high affinity. Folate binds to FOLR1, in a specific way, expressed in 100% of ADKP or over-expressed in 30% of cases. The first objective of this study is to evaluate the effectiveness of this PS2-PDT in four ADKP cell lines: Capan-1, Capan-2, MiapaCa-2, and Panc-1. For this purpose, we first evaluated the gene and protein expression of FOLR1 on four ADKP cell lines. Subsequently, we evaluated PS2’s efficacy in our cell lines and we assessed the impact of PDT on the secretome of cancer cells and its impact on the immune system. Finally, we evaluate the PDT efficacy on a humanized SCID mouse model of pancreatic cancer. In a very interesting way, we observed a significant increase in the proliferation of activated-human PBMC when cultured with conditioned media of ADKP cancer cells subjected to PDT. Furthermore, to evaluate in vivo the impact of this new PS, we analyzed the tumor growth in a humanized SCID mice model of pancreatic cancer. Four conditions were tested: Untreated, mice (nontreated), mice with PS (PS2), mice subjected to illumination (Light only), and mice subjected to illumination in the presence of PS (PDT). We noticed that the mice subjected to PDT presented a strong decrease in the growth of the tumor over time after illumination. Our investigations have not only suggested that PS2-PDT is an effective therapy in the treatment of PDAC but also that it activates the immune system and could be considered as a real adjuvant for anti-cancer vaccination. Thus, this new study provides new treatment options for patients in a therapeutic impasse and will provide a new arsenal in the fight against PDAC.


2019 ◽  
Vol 286 (1906) ◽  
pp. 20191220 ◽  
Author(s):  
Victoria L. Pike ◽  
Katrina A. Lythgoe ◽  
Kayla C. King

Climate change and anthropogenic activity are currently driving large changes in nutritional availability across ecosystems, with consequences for infectious disease. An increase in host nutrition could lead to more resources for hosts to expend on the immune system or for pathogens to exploit. In this paper, we report a meta-analysis of studies on host–pathogen systems across the tree of life, to examine the impact of host nutritional quality and quantity on pathogen virulence. We did not find broad support across studies for a one-way effect of nutrient availability on pathogen virulence. We thus discuss a hypothesis that there is a balance between the effect of host nutrition on the immune system and on pathogen resources, with the pivot point of the balance differing for vertebrate and invertebrate hosts. Our results suggest that variation in nutrition, caused by natural or anthropogenic factors, can have diverse effects on infectious disease outcomes across species.


Diabetologia ◽  
2021 ◽  
Author(s):  
Rasmus J. O. Sjögren ◽  
David Rizo-Roca ◽  
Alexander V. Chibalin ◽  
Elin Chorell ◽  
Regula Furrer ◽  
...  

Abstract Aims/hypothesis Increased levels of branched-chain amino acids (BCAAs) are associated with type 2 diabetes pathogenesis. However, most metabolomic studies are limited to an analysis of plasma metabolites under fasting conditions, rather than the dynamic shift in response to a metabolic challenge. Moreover, metabolomic profiles of peripheral tissues involved in glucose homeostasis are scarce and the transcriptomic regulation of genes involved in BCAA catabolism is partially unknown. This study aimed to identify differences in circulating and skeletal muscle BCAA levels in response to an OGTT in individuals with normal glucose tolerance (NGT) or type 2 diabetes. Additionally, transcription factors involved in the regulation of the BCAA gene set were identified. Methods Plasma and vastus lateralis muscle biopsies were obtained from individuals with NGT or type 2 diabetes before and after an OGTT. Plasma and quadriceps muscles were harvested from skeletal muscle-specific Ppargc1a knockout and transgenic mice. BCAA-related metabolites and genes were assessed by LC-MS/MS and quantitative RT-PCR, respectively. Small interfering RNA and adenovirus-mediated overexpression techniques were used in primary human skeletal muscle cells to study the role of PPARGC1A and ESRRA in the expression of the BCAA gene set. Radiolabelled leucine was used to analyse the impact of oestrogen-related receptor α (ERRα) knockdown on leucine oxidation. Results Impairments in BCAA catabolism in people with type 2 diabetes under fasting conditions were exacerbated after a glucose load. Branched-chain keto acids were reduced 37–56% after an OGTT in the NGT group, whereas no changes were detected in individuals with type 2 diabetes. These changes were concomitant with a stronger correlation with glucose homeostasis biomarkers and downregulated expression of branched-chain amino acid transaminase 2, branched-chain keto acid dehydrogenase complex subunits and 69% of downstream BCAA-related genes in skeletal muscle. In primary human myotubes overexpressing peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, encoded by PPARGC1A), 61% of the analysed BCAA genes were upregulated, while 67% were downregulated in the quadriceps of skeletal muscle-specific Ppargc1a knockout mice. ESRRA (encoding ERRα) silencing completely abrogated the PGC-1α-induced upregulation of BCAA-related genes in primary human myotubes. Conclusions/interpretation Metabolic inflexibility in type 2 diabetes impacts BCAA homeostasis and attenuates the decrease in circulating and skeletal muscle BCAA-related metabolites after a glucose challenge. Transcriptional regulation of BCAA genes in primary human myotubes via PGC-1α is ERRα-dependent. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document