Patient specific implants for amputation prostheses: Design, manufacture and analysis

2012 ◽  
Vol 25 (04) ◽  
pp. 286-296 ◽  
Author(s):  
P. DeVasConCellos ◽  
V. K. Balla ◽  
S. Bose ◽  
R. Fugazzi ◽  
W. S. Dernell ◽  
...  

SummaryObjectives: To design, manufacture and analyze custom implants with functional gradation in macrostructure for attachment of amputation prostheses.Methods: The external shape of the implant was designed by extracting geometrical data of canine cadavers from computed tomography (CT) scans to suit the bone cavity. Three generations of implant designs were developed and were optimized with the help of fit/fill and mechanical performance of implant-cadaver bone assembly using CT analysis and compression testing, respectively. A final optimized, custom Ti6Al4V alloy amputation implant, with approximately 25% porosity in the proximal region and approximaltely zero percent porosity in the distal region, was fabricated using Laser Engineered Net Shaping (LENS™) – a laser based additive manufacturing technology.Results: The proposed design changes in the second generation designs, in terms of refining thresholds, increased the average fill of the bone cavity from 58% to 83%. Addition of a flange between the stem and the head in the second generation designs resulted in more than a seven-fold increase in the compressive load carrying capacity of the assembly. Application of LENS™ in the fabrication of present custom fit Ti6Al4V alloy implants enabled incorporation of 20 to 30% porosity in the proximal region and one to two percent residual porosity in the distal portion of the implant.Clinical significance: Patient specific prostheses having direct connection to the skeletal structure can potentially aid in problems related to load transfer and proprioception in amputees. Furthermore, application of LENS™ in the fabrication of custom implants can be faster to incorporate site specific porosity and gradients for improving long-term stability.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saurabhi Samant ◽  
Wei Wu ◽  
Shijia Zhao ◽  
Behram Khan ◽  
Mohammadali Sharzehee ◽  
...  

AbstractLeft main (LM) coronary artery bifurcation stenting is a challenging topic due to the distinct anatomy and wall structure of LM. In this work, we investigated computationally and experimentally the mechanical performance of a novel everolimus-eluting stent (SYNERGY MEGATRON) purpose-built for interventions to large proximal coronary segments, including LM. MEGATRON stent has been purposefully designed to sustain its structural integrity at higher expansion diameters and to provide optimal lumen coverage. Four patient-specific LM geometries were 3D reconstructed and stented computationally with finite element analysis in a well-validated computational stent simulation platform under different homogeneous and heterogeneous plaque conditions. Four different everolimus-eluting stent designs (9-peak prototype MEGATRON, 10-peak prototype MEGATRON, 12-peak MEGATRON, and SYNERGY) were deployed computationally in all bifurcation geometries at three different diameters (i.e., 3.5, 4.5, and 5.0 mm). The stent designs were also expanded experimentally from 3.5 to 5.0 mm (blind analysis). Stent morphometric and biomechanical indices were calculated in the computational and experimental studies. In the computational studies the 12-peak MEGATRON exhibited significantly greater expansion, better scaffolding, smaller vessel prolapse, and greater radial strength (expressed as normalized hoop force) than the 9-peak MEGATRON, 10-peak MEGATRON, or SYNERGY (p < 0.05). Larger stent expansion diameters had significantly better radial strength and worse scaffolding than smaller stent diameters (p < 0.001). Computational stenting showed comparable scaffolding and radial strength with experimental stenting. 12-peak MEGATRON exhibited better mechanical performance than the 9-peak MEGATRON, 10-peak MEGATRON, or SYNERGY. Patient-specific computational LM stenting simulations can accurately reproduce experimental stent testing, providing an attractive framework for cost- and time-effective stent research and development.


2020 ◽  
Vol 70 (4) ◽  
pp. 428-438
Author(s):  
Sigong Zhang ◽  
Ying Hei Chui ◽  
David Joo

Abstract Panelized light wood frame construction is becoming more popular due to the faster construction time and shortage of onsite skilled labor. To use light wood frame panels effectively in panelized floor systems, panel-to-panel joints must be fastened adequately to allow load transfer between panels. They must also possess in-plane shear strength and stiffness comparable to stick-built, staggered-sheathed assemblies. This study was designed to develop efficient and effective panel-to-panel joints for connecting adjacent floor panels built with wood I-joists and evaluate the efficiency of the joints in achieving diaphragm action. At first, a number of these panel-to-panel joints were tested in the laboratory using a small-scale diaphragm test setup to determine their efficiency in transferring in-plane forces between panels. Test results showed that a small decrease in in-plane stiffness was expected for the most effective joints, but their strengths were significantly higher than at the same location in a conventional site-built floor diaphragm. The presence of blockings and use of two-row nailing were found to considerably improve stiffness and strength. These features can be used to mitigate the potential reduction in mechanical performance of panelized floor construction, in comparison with the site-built wood I-joist floor.


Author(s):  
Marinela Peto ◽  
Oscar Aguilar-Rosas ◽  
Erick Erick Ramirez-Cedillo ◽  
Moises Jimenez ◽  
Adriana Hernandez ◽  
...  

Abstract Lattice structures offer great benefits when employed in medical implants for cell attachment and growth (osseointegration), minimization of stress shielding phenomena, and weight reduction. This study is focused on a proof of concept for developing a generic shoulder hemi-prosthesis, from a patient-specific case of a 46 years old male with a tumor on the upper part of his humerus. A personalized biomodel was designed and a lattice structure was integrated in its middle portion, to lighten weight without affecting humerus’ mechanical response. To select the most appropriate lattice structure, three different configurations were initially tested: Tetrahedral Vertex Centroid (TVC), Hexagonal Prism Vertex Centroid (HPVC), and Cubic Diamond (CD). They were fabricated in resin by digital light processing and its mechanical behavior was studied via compression testing and finite element modeling (FEM). The selected structure according to the results was the HPVC, which was integrated in a digital twin of the biomodel to validate its mechanical performance through FEM but substituting the bone material model with a biocompatible titanium alloy (Ti6Al4V) suitable for prostheses fabrication. Results of the simulation showed acceptable levels of Von Mises stresses (325 MPa max.), below the elastic limit of the titanium alloys, and a better response (52 MPa max.) in a model with equivalent elastic properties, with stress performance in the same order of magnitude than the showed in bone’s material model.


Author(s):  
Carlos Moreno ◽  
Kiran Bhaganagar

Patient specific simulations of a single patient based on an accurate representation of the plaque in a diseased coronary artery with 35% stenosis are performed to understand the effect of inlet forcing frequency and amplitude on the wall shear stress (WSS). Numerical simulations are performed with unsteady flow conditions in a laminar regime. The results have revealed that at low amplitudes, WSS is insensitive to forcing frequency and is it in phase with Q. The maximum WSS is observed at the proximal region of the stenosis, and WSS has highest negative values at the peak location of the stenosis. For higher pulsatile amplitude (a > 1.0), WSS exhibits a strong sensitivity with forcing frequencies. At higher forcing frequency the WSS exhibits nonlinear response to the inlet forcing frequency. Furthermore, significant differences in the mean velocity profile are observed during maximum and minimum volumetric flow rates.


2015 ◽  
Vol 36 (3) ◽  
pp. 67-74 ◽  
Author(s):  
Krzysztof Szarf ◽  
Gael Combe ◽  
Pascal Villard

Abstract The mechanical performance of underground flexible structures such as buried pipes or culverts made of plastics depend not only on the properties of the structure, but also on the material surrounding it. Flexible drains can deflect by 30% with the joints staying tight, or even invert. Large deformations of the structure are difficult to model in the framework of Finite Element Method, but straightforward in Discrete Element Methods. Moreover, Discrete Element approach is able to provide information about the grain-grain and grain-structure interactions at the microscale. This paper presents numerical and experimental investigations of flexible buried pipe behaviour with focus placed on load transfer above the buried structure. Numerical modeling was able to reproduce the experimental results. Load repartition was observed, being affected by a number of factors such as particle shape, pipe friction and pipe stiffness.


Author(s):  
Isotta Morfini ◽  
Luca Goglio ◽  
Giovanni Belingardi ◽  
Sayed A. Nassar

This study investigates the effect of cure time and surface roughness on mechanical performance of single lap joints (SLJ). Test joints are made of aluminum/aluminum or aluminum/magnesium adherends that are autoclave-bonded using a commercially available film adhesive. Joint mechanical performance is assessed in terms of the static load transfer capacity (LTC), fatigue life and failure mode. Except for the cure time, all the rates of the other autoclave-bonding parameters are kept constant; namely, the level of cure temperature and pressure, as well as the rates of autoclave heating, cooling, pressurization and depressurization. Test data, failure mode analysis, discussion, observations and conclusions are provided.


2021 ◽  
Author(s):  
George Hyde-Linaker ◽  
Pauline Hall Barrientos ◽  
Sokratis Stoumpos ◽  
Asimina Kazakidi

Abstract Despite arteriovenous fistulae (AVF) being the preferred vascular access for haemodialysis, high primary failure rates (30-70%) and low one-year patency rates (40-70%) hamper their use. The haemodynamics within the vessels of the fistula change significantly following surgical creation of the anastomosis and can be a surrogate of AVF success or failure. Computational fluid dynamics (CFD) can crucially predict AVF outcomes through robust analysis of a fistula’s haemodynamic patterns, which is impractical in-vivo. We present a proof-of-concept CFD framework for characterising the AVF blood flow prior and following surgical creation of a successful left radiocephalic AVF in a 20-year-old end-stage kidney disease patient. The reconstructed vasculature was generated utilising multiple contrast-enhanced magnetic resonance imaging (MRI) datasets. Large eddy simulations were conducted for establishing the extent of arterial and venous remodelling. Following anastomosis creation, a significant 2-3-fold increase in blood flow rate was induced downstream of the left subclavian artery. This was validated through comparison with post-AVF patient-specific phase-contrast data. The increased flow rate yielded an increase in time-averaged wall shear stress (TAWSS), a key marker of adaptive vascular remodelling. We have demonstrated TAWSS and oscillatory shear distributions of the transitional-flow in the venous anastomosis are predictive of AVF remodelling.


2000 ◽  
Vol 37 (1) ◽  
pp. 56-74 ◽  
Author(s):  
M Hesham El Naggar ◽  
Jin Qi Wei

Tapered piles have a substantial advantage with regard to their load-carrying capacity in the downward frictional mode. The uplift performance of tapered piles, however, has not been fully understood. This paper describes the results of an experimental investigation into the characteristics of the uplift performance of tapered piles. Three instrumented steel piles with different degrees of taper were installed in cohesionless soil and subjected to compressive and tensile load tests. The soil was contained in a steel soil chamber and pressurized using an air bladder to facilitate modelling the confining pressures pertinent to larger embedment depths. The results of this study indicated that the pile axial uplift capacity increased with an increase in the confining pressure for all piles examined in this study. The ratios of uplift to compressive load for tapered piles were less than those for straight piles of the same length and average embedded diameter. The uplift capacity of tapered piles was found to be comparable to that of straight-sided wall piles at higher confining pressure values, suggesting that the performance of actual tapered piles (with greater length) would be comparable to that of straight-sided wall piles. Also, the results indicated that residual stresses developed during the compressive loading phase and their effect were more significant on the initial uplift capacity of piles, and this effect was more pronounced for tapered piles in medium-dense sand.Key words: tapered piles, uplift, axial response, load transfer, experimental modelling.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Jacob T. Munro ◽  
Justin W. Fernandez ◽  
James S. Millar ◽  
Cameron G. Walker ◽  
Donald W. Howie ◽  
...  

Periprosthetic osteolysis in the retroacetabular region with cancellous bone loss is a recognized phenomenon in the long-term follow-up of total hip replacement. The effects on load transfer in the presence of defects are less well known. A validated, patient-specific, 3D finite element (FE) model of the pelvis was used to assess changes in load transfer associated with periprosthetic osteolysis adjacent to a cementless total hip arthroplasty (THA) component. The presence of a cancellous defect significantly increased (p < 0.05) von Mises stress in the cortical bone of the pelvis during walking and a fall onto the side. At loads consistent with single leg stance, this was still less than the predicted yield stress for cortical bone. During higher loads associated with a fall onto the side, highest stress concentrations occurred in the superior and inferior pubic rami and in the anterior column of the acetabulum with larger cancellous defects.


Sign in / Sign up

Export Citation Format

Share Document