scholarly journals About JPEG Images Parameters Impact to Steganalys Accuracy

Author(s):  
N. Koshkina

Introduction. Existing examples of illegal use of computer steganography prove the need for the development of stegananalytical methods and systems as one of the most important areas of cybersecurity. The advantage of machine learning-based stegananalytical methods is their versatility: they do not rely on knowledge of the injection algorithm and can be used to detect a wide range of steganographic methods. However, before being used for detecting steganocontainers, the methods mentioned require training on containers that are determined for sure whether they contain hidden messages or not. On this stage, it is very important to understand how the parameters of containers under investigation, in particular, such a common variant as JPEG images, affect the accuracy of steganalysis. After all, the inconsistency of the source of containers is an open problem of steganalysis leading to significant decrease of accuracy of detecting hidden messages after the classifier is moved from the laboratory to the real world. The purpose of the work is investigation of influence of the content, size and quality factor of JPEG images to the accuracy of their steganalysis performed by statistical methods based on machine learning. Results. During the research the following patterns were revealed: 1) the accuracy is better when images with a close percentage of coefficients suitable for DCT concealment are used for training and control, 2) images are classified more accurately when they have a relatively small number of suitable DCT coefficients, 3) with using mixed training samples (by content or parameters) the accuracy of steganalysis deteriorates, 4) decreasing quality factor of JPEG-images leads to increasing the accuracy of their steganalysis, 5) increasing size of images increases the accuracy of their steganalysis, 6) images where desynchronization of blocks took place during preprocessing are classified more accurately, 7) the sequence of the image preprocessing operations affects the accuracy of its steganoanalysis. Conclusions. For steganography tasks – the choice of JPEG containers, taking into account revealed patterns, makes steganographic hides more resistant to passive attacks. Considering them for tasks of steganalysis allows one to interpret the obtained results more accurately. Keywords: information security, steganography, stegananalysis, intelligent computer systems, machine learning, detection accuracy.

Author(s):  
Shuping Dang ◽  
Guoqing Ma ◽  
Basem Shihada ◽  
Mohamed-Slim Alouini

<pre>The smart building (SB), a promising solution to the fast-paced and continuous urbanization around the world, is an integration of a wide range of systems and services and involves a construction of multiple layers. The SB is capable of sensing, acquiring and processing a tremendous amount of data as well as performing proper action and adaptation accordingly. With rapid increases in the number of connected nodes and thereby the data transmission demand in SBs, conventional transmission and processing techniques are insufficient to provide satisfactory services. To enhance the intelligence of SBs and achieve efficient monitoring and control, both indoor visible light communications (VLC) and machine learning (ML) shall be applied jointly to construct a reliable data transmission network with powerful data processing and reasoning abilities. In this regard, we envision an SB framework enabled by indoor VLC and ML in this article.</pre>


2020 ◽  
Author(s):  
NaKyeong Kim ◽  
Suho Bak ◽  
Minji Jeong ◽  
Hongjoo Yoon

&lt;p&gt;&lt;span&gt;A sea fog is a fog caused by the cooling of the air near the ocean-atmosphere boundary layer when the warm sea surface air moves to a cold sea level. Sea fog affects a variety of aspects, including maritime and coastal transportation, military activities and fishing activities. In particular, it is important to detect sea fog as they can lead to ship accidents due to reduced visibility. Due to the wide range of sea fog events and the lack of constant occurrence, it is generally detected through satellite remote sensing. Because sea fog travels in a short period of time, it uses geostationary satellites with higher time resolution than polar satellites to detect fog. A method for detecting fog by using the difference between 11 &amp;#956;m channel and 3.7 &amp;#956;m channel was widely used when detecting fog by satellite remote sensing, but this is difficult to distinguish between lower clouds and fog. Traditional algorithms are difficult to find accurate thresholds for fog and cloud. However, machine learning algorithms can be used as a useful tool to determine this. In this study, based on geostationary satellite imaging data, a comparative analysis of sea fog detection accuracy was conducted through various methods of machine learning, such as Random Forest, Multi-Layer Perceptron, and Convolutional Neural Networks.&lt;/span&gt;&lt;/p&gt;


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Moumita Pramanik ◽  
Ratika Pradhan ◽  
Parvati Nandy ◽  
Saeed Mian Qaisar ◽  
Akash Kumar Bhoi

This article presents a machine learning approach for Parkinson’s disease detection. Potential multiple acoustic signal features of Parkinson’s and control subjects are ascertained. A collaborated feature bank is created through correlated feature selection, Fisher score feature selection, and mutual information-based feature selection schemes. A detection model on top of the feature bank has been developed using the traditional Naïve Bayes, which proved state of the art. The Naïve Bayes detector on collaborative acoustic features can detect the presence of Parkinson’s magnificently with a detection accuracy of 78.97% and precision of 0.926, under the hold-out cross validation. The collaborative feature bank on Naïve Bayes revealed distinguishable results as compared to many other recently proposed approaches. The simplicity of Naïve Bayes makes the system robust and effective throughout the detection process.


2019 ◽  
Vol 35 (20) ◽  
pp. 4072-4080 ◽  
Author(s):  
Timo M Deist ◽  
Andrew Patti ◽  
Zhaoqi Wang ◽  
David Krane ◽  
Taylor Sorenson ◽  
...  

Abstract Motivation In a predictive modeling setting, if sufficient details of the system behavior are known, one can build and use a simulation for making predictions. When sufficient system details are not known, one typically turns to machine learning, which builds a black-box model of the system using a large dataset of input sample features and outputs. We consider a setting which is between these two extremes: some details of the system mechanics are known but not enough for creating simulations that can be used to make high quality predictions. In this context we propose using approximate simulations to build a kernel for use in kernelized machine learning methods, such as support vector machines. The results of multiple simulations (under various uncertainty scenarios) are used to compute similarity measures between every pair of samples: sample pairs are given a high similarity score if they behave similarly under a wide range of simulation parameters. These similarity values, rather than the original high dimensional feature data, are used to build the kernel. Results We demonstrate and explore the simulation-based kernel (SimKern) concept using four synthetic complex systems—three biologically inspired models and one network flow optimization model. We show that, when the number of training samples is small compared to the number of features, the SimKern approach dominates over no-prior-knowledge methods. This approach should be applicable in all disciplines where predictive models are sought and informative yet approximate simulations are available. Availability and implementation The Python SimKern software, the demonstration models (in MATLAB, R), and the datasets are available at https://github.com/davidcraft/SimKern. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 16 ◽  
Author(s):  
Fee Faysal Ahmed ◽  
Mst Shamima Khatun ◽  
Md. Parvez Mosharaf ◽  
Md. Nurul Haque Mollah

Background: Protein-protein interactions (PPI) play a vital role in a wide range of biological processes starting from cell-cell interactions to developmental control in all organisms. However, experimental identification of PPI is often laborious, time-consuming and costly compared to computational prediction. There are several computational prediction models in the literature based on complete training samples, but none of them dealt with the partial training samples. Objective: The objective of this work was to develop an effective PPI prediction model for Arabidopsis Thaliana using partial training samples in a machine learning framework. Methods: We proposed an effective computational PPI prediction model by combining random forest (RF) classifier and autocorrelation (AC) sequence encoding features with 1:2 ratio of positive-PPI and unknown-PPI samples. Results: We observed that the proposed prediction model produces the highest average performance scores of sensitivity (94.62%), AUC (0.92) and pAUC (0.189) with the training datasets and sensitivity (88.14%), AUC (0.89) and pAUC (0.176) with the test datasets of 5-fold cross-validation compared to other candidate predictors based on LDA, LOGI, ADA, NB, KNN & SVM classifiers. It also computed the highest performance scores of TPR (91.82%) and pAUC (0.174) at FPR= 20% with AUC (0.948) compared to other candidate predictors. Conclusion: Overall performance of the developed model revealed that our proposed predictor might be useful to elucidate the biological function of unseen PPIs from a large number of candidate proteins in Arabidopsis thaliana.


Author(s):  
Shuping Dang ◽  
Guoqing Ma ◽  
Basem Shihada ◽  
Mohamed-Slim Alouini

<pre>The smart building (SB), a promising solution to the fast-paced and continuous urbanization around the world, is an integration of a wide range of systems and services and involves a construction of multiple layers. The SB is capable of sensing, acquiring and processing a tremendous amount of data as well as performing proper action and adaptation accordingly. With rapid increases in the number of connected nodes and thereby the data transmission demand in SBs, conventional transmission and processing techniques are insufficient to provide satisfactory services. To enhance the intelligence of SBs and achieve efficient monitoring and control, both indoor visible light communications (VLC) and machine learning (ML) shall be applied jointly to construct a reliable data transmission network with powerful data processing and reasoning abilities. In this regard, we envision an SB framework enabled by indoor VLC and ML in this article.</pre>


2018 ◽  
Author(s):  
Sherif Tawfik ◽  
Olexandr Isayev ◽  
Catherine Stampfl ◽  
Joseph Shapter ◽  
David Winkler ◽  
...  

Materials constructed from different van der Waals two-dimensional (2D) heterostructures offer a wide range of benefits, but these systems have been little studied because of their experimental and computational complextiy, and because of the very large number of possible combinations of 2D building blocks. The simulation of the interface between two different 2D materials is computationally challenging due to the lattice mismatch problem, which sometimes necessitates the creation of very large simulation cells for performing density-functional theory (DFT) calculations. Here we use a combination of DFT, linear regression and machine learning techniques in order to rapidly determine the interlayer distance between two different 2D heterostructures that are stacked in a bilayer heterostructure, as well as the band gap of the bilayer. Our work provides an excellent proof of concept by quickly and accurately predicting a structural property (the interlayer distance) and an electronic property (the band gap) for a large number of hybrid 2D materials. This work paves the way for rapid computational screening of the vast parameter space of van der Waals heterostructures to identify new hybrid materials with useful and interesting properties.


2020 ◽  
Author(s):  
Sina Faizollahzadeh Ardabili ◽  
Amir Mosavi ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
Annamaria R. Varkonyi-Koczy ◽  
...  

Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed-decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and they are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models needs to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to SIR and SEIR models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. Paper further suggests that real novelty in outbreak prediction can be realized through integrating machine learning and SEIR models.


Author(s):  
О. Кravchuk ◽  
V. Symonenkov ◽  
I. Symonenkova ◽  
O. Hryhorev

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alhassan Alkuhlani ◽  
Walaa Gad ◽  
Mohamed Roushdy ◽  
Abdel-Badeeh M. Salem

Background: Glycosylation is one of the most common post-translation modifications (PTMs) in organism cells. It plays important roles in several biological processes including cell-cell interaction, protein folding, antigen’s recognition, and immune response. In addition, glycosylation is associated with many human diseases such as cancer, diabetes and coronaviruses. The experimental techniques for identifying glycosylation sites are time-consuming, extensive laboratory work, and expensive. Therefore, computational intelligence techniques are becoming very important for glycosylation site prediction. Objective: This paper is a theoretical discussion of the technical aspects of the biotechnological (e.g., using artificial intelligence and machine learning) to digital bioinformatics research and intelligent biocomputing. The computational intelligent techniques have shown efficient results for predicting N-linked, O-linked and C-linked glycosylation sites. In the last two decades, many studies have been conducted for glycosylation site prediction using these techniques. In this paper, we analyze and compare a wide range of intelligent techniques of these studies from multiple aspects. The current challenges and difficulties facing the software developers and knowledge engineers for predicting glycosylation sites are also included. Method: The comparison between these different studies is introduced including many criteria such as databases, feature extraction and selection, machine learning classification methods, evaluation measures and the performance results. Results and conclusions: Many challenges and problems are presented. Consequently, more efforts are needed to get more accurate prediction models for the three basic types of glycosylation sites.


Sign in / Sign up

Export Citation Format

Share Document