scholarly journals EKSPLORASI DAN IDENTIFIKASI CENDAWAN ANTAGONIS TERHADAP JAMUR AKAR PUTIH (Rigidoporus lignosus) PADA TANAMAN PALA (Myristica fragrans Houtt)

2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Nana Ariska ◽  
Lola Adres Yanti ◽  
Chairudin Chairudin

Nutmeg (Myristica fragrans Houtt) is a multipurpose plantation commodity crop that almost all parts of the plant have strategic economic value to be cultivated. In Indonesia there are the largest nutmeg commodity centers, including the Maluku islands, North Sulawesi and Aceh. The biggest problem with nutmeg plants is the attack of pests and diseases. One of the most severe diseases in nutmeg is white root mushroom (Rigidoporus lignosus). This study aims to 1) determine the fungus of white root fungus antagonists (Rigodoporus lignosus) from the Aceh nutmeg rhizosphere (Myristica fragrans Houtt), 2) identify the content of antibiotic fungus JAP antagonist compounds in Aceh nutmeg plants. The study was conducted by taking soil samples from nutmeg plants at three nutmeg plantations in South Aceh. The antagonist fungus isolation activity uses a dilution method. Isolation of JAP from infected roots using direct planting method. Furthermore, it is identified macroscopically and microscopically. The antagonist test was carried out using the dual culture method with RAL. From the rhizosphere in the nutmeg area, 5 candidate antagonist isolates were obtained, having high in vitro antagonism ability to the pathogen R. lignosus. Identification results showed that isolates 1, 2 and 3 were Trichoderma spp, and isolates 4 and 5 were Gliocladium virens. Keywords: In vitro, the content of antibiotic compounds, Aceh nutmeg, Rigidoporus lignosus, antagonistic test

Author(s):  
Jaygendra Kumar ◽  
Mukesh Kumar ◽  
Akash Tomar ◽  
. Vaishali ◽  
Pushpendra Kumar ◽  
...  

Trichoderma species are well known for their biocontrol activity which colonize many soil and tuber-borne and foliage plant pathogens. In this study, 12 native isolates of Trichiderma spp were collected from various crop rhizosphere soil samples and characterized them phenotypically based on morphological and cultural features and genotypically based on sequence analysis of internal transcribed spacer (ITS) region-PCR amplification. The results obtained from phenotypic and genotypic observation revealed that isolates were belonged to five different species namely T. asperellum, T. harzianum, T. longibrachiatum, T. koningii and T. koningiopsis. All Trichoderma isolates produced ~600 bp amplicon and phylogenetic analysis revealed that all isolates were grouped with respective species. Further, the antagonistic potential of all the isolates was evaluated against Fusarium spp. following in vitro dual culture method. The results showed that isolates of T. harzianum exhibited maximum growth inhibition activity. The highest rate of inhibition was recorded with T. harzianum isolate TBT6 (87.1%) followed by TBT7 (82.2%), while the least inhibition was observed in T. longibrachiatum isolate TBT10 (59.7%) after 7 days of incubation. The antagonistic T. harzianum isolate TBT6 can be used for development of Trichoderma based bio-formulation and served as bio-control agent against Fusaium spp. under field conditions.


2016 ◽  
Vol 12 (3) ◽  
pp. 96
Author(s):  
Susiana Purwantisari ◽  
Achmadi Priyatmojo ◽  
Retno Peni Sancayaningsih ◽  
Rina Sri Kasiamdari

Late blight disease on potato caused by a plant pathogenic fungus (Phytophthora infestans)  is the most important disease in Indonesia.  The use of antagonist fungi Trichoderma is an environmentally friendly technology to control the potato disease. The purpose of this study was to determine the ability of Trichoderma spp. to control P. infestans in vitro. Trichoderma spp. have been isolated from suppressive soil at central potato areas in district of Lembang, Bandung, West Java Province. To determine the inhibition ability of Trichoderma spp against P. infestans, a dual culture method was performed.  Variable observed was inhibition zone of Trichoderma spp. against P. infestans. The results showed that 9 isolates of Trichoderma were successfuly isolated from suppressive soil, i.e. T. viride (2 isolates), T. atroviride (1 isolate), T. harzianum (1 isolate) and T. aureoviride (5 isolates). All the Trichoderma isolates revealed growth inhibition abality against P. infestans and. The highest growth inhibition (68.6%) was observed by T. viride isolate ( Ti 9).


2021 ◽  
Vol 25 (2) ◽  
pp. 197
Author(s):  
Rochmalia Juniarti Putri ◽  
Retno Kawuri ◽  
Anak Agung Ketut Darmadi ◽  
Inna Narayani

Red chilli plant (Capsicum annum L.) is one of the most popular vegetable crops in Indonesian society. One of them the pathogens attacks is Colletotrichum acutatum, a fungus causing anthracnose on red chilli. This study aims to determine the existence of Streptomyces sp. bacteria in the rhizosphere of the red chilli plant; the ability of Streptomyces sp. in inhibiting C. acutatum; Minimum Inhibitory Concentration (MIC) of Streptomyces isolates extracts in inhibiting C. acutatum; The Streptomyces isolation was carried out by dilution method using selective meida, namely Yeast Malt Agar. The Dual Culture method was used as an inhibition test between Streptomyces sp. and C. acutatum in vitro. A well diffusion method was used to test the effectiveness of the Streptomyces sp. and MIC filtrate concentration in inhibiting C. acutatum. The data obtained in this study were analyzed with Analysis of Varian (ANOVA) then continued with Duncan Multiple Range Test with 5% significance. Five Streptomyces isolates were found, namely Streptomyces sp.1, Streptomyces sp.2, Streptomyces sp.3, Streptomyces sp.4, and Streptomyces sp.5 in the rhizosphere of healthy C. annum L. plants in Daup Village, Kintamani District, Bangli Regency. Streptomyces sp. isolates. can significantly inhibit the growth of the fungus C. acuatum with inhibitory power ranging from 50.30% to 83.76%, Streptomyces sp.5 isolate was able to provide the highest percentage of inhibition in C. acutatum of 83.76 ± 2.91% with MIC 7% (v/v) with a diameter of 6.40 mm.


Agrikultura ◽  
2017 ◽  
Vol 28 (1) ◽  
Author(s):  
Endah Yulia Yulia ◽  
Noor Istifadah ◽  
Fitri Widiantini ◽  
Hilda Sandra Utami

ABSTRACTAntagonisms of Trichoderma spp. against Rigidoporus lignosus (Klotzsch) Imazeki and Supression of White Root Disease on Rubber PlantWhite root disease caused by the infection of fungal pathogen Rigidoporus lignosus is an important disease on rubber plants. The pathogen infects the rubber roots but then might cause leaf drop or even kill the plants. Common control method used in controlling the disease is the application of synthetic fungicides besides increasing application of biological control agents (BCA) as an alternative control method. Trichoderma spp. is frequently used as BCA to control diseases in many plants. The aims of this study were to test the antagonism of Trichoderma spp. against R. lignosus and to assess the effectiveness of Trichoderma spp. corn starter in white root disease suppression on rubber seedlings. Trichoderma spp. The antagonism test was conducted using dual culture method in in vitro test. A randomized block design (RBD) experimental design was used in the glass house trial consisted of five treatments and five replications. Application of the Trichoderma spp. corn starter was combined with the application of compost in the treatments of 25 g BCA + 100 g of compost, 50 g BCA + 200 g of compost, 75 g BCA + 300 g of compost, 100 g of BCA + 400 g of compost, and a control treatment without BCA. The BCA Trichoderma spp. was applied in the same time with the inoculation of 20 g of corn mass culture of R. lignosus. The result of antagonism test showed that Trichoderma spp. isolate was effectively suppressed micelial growth of R. lignosus with the supperession percentage reached 90.82%. Meanwhile, the Trichoderma spp. BCA in corn starter was also suppressed the disease development on rubber seedlings with the highest disease suppression of 100% at the dose of 100 g BCA/seedling.Keywords: Trichoderma spp., biocontrol agents, white root disease, rubberABSTRAKPenyakit jamur akar putih (JAP) merupakan penyakit penting pada tanaman karet. Penyakit ini disebabkan oleh infeksi patogen Rigidoporus lignosus pada akar tanaman karet yang dapat mengakibatkan daun gugur atau bahkan matinya tanaman. Pengendalian yang umum dilakukan adalah pengendalian kimia dengan menggunakan pestisida sintetik tetapi penggunaan agens biokontrol (ABK) juga telah mulai banyak dilakukan. Penggunaan Trichoderma spp. sebagai ABK telah banyak dilakukan untuk mengendalikan penyakit pada beberapa tanaman dengan hasil yang memuaskan. Penelitian ini bertujuan untuk menguji antagonisme Trichoderma spp. terhadap jamur R. lignosus dan penekanan penyakit JAP pada bibit tanaman karet yang diberi perlakuan starter jagung pecah Trichoderma spp. Pengujian antagonisme dilakukan secara in vitro melalui metode dual culture. Percobaan rumah kaca dilakukan dengan menggunakan Rancangan Acak Kelompok (RAK) yang terdiri atas lima perlakuan dan lima ulangan. Aplikasi starter Trichoderma spp. dilakukan dengan tambahan kompos pada perlakuan 25 g ABK + 100 g kompos, 50 g ABK + 200 g kompos, 75 g ABK + 300 g kompos, 100 g ABK + 400 g kompos, dan perlakuan kontrol atau tanpa aplikasi ABK Trichoderma spp. Aplikasi ABK dilakukan bersamaan dengan inokulasi biakan massal jagung pecah jamur R. lignosus sebanyak 20 g/bibit. Hasil uji antagonisme menunjukkan isolatTrichoderma spp. efektif menekan pertumbuhan R. lignosus dengan penekanan mencapai 90,82%. Demikian juga dengan aplikasi starter jagung pecah Trichoderma spp. menunjukkan penekanan penyakit JAP pada bibit tanaman karet dengan penekanan penyakit mencapai 100% pada dosis 100 g ABK/bibit tanaman karet.Kata Kunci: Trichoderma spp., agens biokontrol, jamur akar putih, karet


Author(s):  
NURHAYATI DAMIRI ◽  
MULAWARMAN MULAWARMAN ◽  
RAHIM S EFFENDI

Abstract. Damiri N, Mulawarman, Effendi RS. 2019. Antagonism of Pseudomonas fluorescens from plant roots to Rigidoporus lignosus pathogen of rubber white roots in vitro. Biodiversitas 20: 1549-1554. Indonesia's rubber productivity is still relatively low. This low productivity of rubber can be caused by many factors such as the attack of Rigidoporus lignosus. This study aims to explore antagonistic bacteria from the plant roots and test their antagonism ability to R. lignosus at the laboratory level. This research was conducted at the Laboratory at the Faculty of Agriculture, Sriwijaya University, Indralaya Ogan Ilir District, South Sumatra, Indonesia. Corporate and bacterial isolations are carried out by serial dilution method. In-vitro testing of antagonistic bacteria was carried out using the dual-culture technique method on sterile PDA media by direct opposition between R. lignosus culture and antagonistic bacteria explored. Results of the study showed that a number of bacterial isolates existed there, namely 11 bacterial isolates belonging to Pseudomonas fluorescens, four from turmeric roots, three from the roots of rubber seedlings, two from galangal roots and two from the roots of yielding rubber plants. P. fluorescens from roots of turmeric, rubber seedlings, rubber, and galangal was able and had the potential to be developed as biopesticide to control R. lignosus. The best isolate in suppressing the growth and development of R. ligonosus is P. fluorescens isolates from the roots of turmeric and those of rubber seedlings (isolates of C, B, and G).


2016 ◽  
Vol 3 (1) ◽  
pp. 28
Author(s):  
Winda Nawfetrias ◽  
Eka Nurhangga ◽  
Sutardjo .

Cocoa black pod rot is caused by pathogenic fungi, Phytophtora palmivora, which decrease the cocoa production up to 90%. The use of biological control agents, Trichoderma spp., is one of the promising P. palmivora controllers since it is low-cost, easily found and safe for the environment. The aims of this research were to understand the compatibility, antagonistic and effectiveness of biofungicide containing active ingredient of Trichoderma spp. against P. palmivora in vitro and to test the effective concentration of biofungicide containing active ingredient of T. asperellum to control P. palmivora in vitro and in vivo. T. asperellum, T. harzianum, and T. viride were grown together on PDA medium to test their compatibility. Antagonistic and effectiveness test of Trichoderma spp. against P. palmivora were tested using the in vitro dual culture method. The effectiveness of T. asperellum biofungicide was tested in vivo on cocoa pot. Compatibility test showed that all three species were compatible and the best effectiveness showed by the combination of T. asperellum and T. viride. The result also showed that T. asperellum biofungicide had an ability to inhibit P. palmivora.   Keywords: Trichoderma spp., effectivity, compatibility, antagonistic, biofungicide  ABSTRAKPenyakit busuk buah kakao disebabkan cendawan patogen Phytophtora palmivora, yang dapat menurunkan produksi kakao sampai 90%. Penggunaan agensia pengendali hayati (APH), Trichoderma spp., merupakan salah satu pengendalian P. palmivora yang menjanjikan karena murah, mudah didapat dan aman terhadap lingkungan. Penelitian ini bertujuan mengetahui kesesuaian, antagonistik, dan efektivitas biofungisida berbahan aktif Trichoderma spp. secara in vitro. Di samping itu juga bertujuan mengetahui konsentrasi efektif biofungisida berbahan aktif T. asperellum untuk mengendalikan P. palmivora secara in vitro dan in vivo. T. asperellum, T. harzianum, dan T. viride, ditumbuhkan bersama pada media PDA untuk mengetahui kesesuaian antarspesies. Antagonistik dan efektivitas Trichoderma spp. terhadap P. palmivora secara in vitro diuji menggunakan metode dual culture. Biofungisida berbahan aktif T. asperellum diuji efektivitasnya secara in vivo pada buah kakao. Hasil uji kesesuaian menunjukkan bahwa ketiga spesies yang diuji berkesesuaian dan efektifitas terbaik ditunjukkan pada kombinasi T. asperellum dan T. viride. Hasil penelitian juga menunjukkan bahwa biofungisida berbahan aktif T. asperellum dengan konsentrasi tertinggi terbukti dapat menghambat pertumbuhan P. palmivora.Kata kunci: Trichoderma spp., efektivitas, kesesuaian, antagonis, biofungisida


1970 ◽  
Vol 5 (3) ◽  
pp. 447-454
Author(s):  
Susanna ◽  
Meity S. Sinaga ◽  
Suryo Wiyono ◽  
Hermanu Triwidodo

Dieback disease caused by Lasiodiplodia theobromae is an important disease on the nutmeg tree in Aceh Selatan. The disease has been widespread in the district. One alternative to control the disease is the use of antagonistic fungi from the nutmeg tree to inhibit the development of the cause of the disease. In vitro experiments were carried out by evaluating 4 types of antagonistic fungi from the nutmeg tree to L. theobromae. The aim of the study was to determine the potential of in situ soil fungus as an antagonistic agents against L. theobromae, the cause of dieback disease on the nutmeg tree in Aceh Selatan. Microbial isolation using serial dilution method. The fungus test which was successfully isolated as an antagonist candidate was carried out through the dual culture method. The results showed that four fungi namely; Trichoderma harzianum, T. virens, T. asperellum, and Talaromyces pinophilus have the potential as antagonistic agents against pathogens cause dieback disease on the nutmeg tree in Aceh Selatan, with inhibitory power ranging from 66-100% in vitro.


2022 ◽  
Vol 951 (1) ◽  
pp. 012021
Author(s):  
Muzakir ◽  
Hifnalisa ◽  
J. Jauharlina ◽  
Rina Sriwati

Abstract The objective of this research was to determine the antagonistic activity of Trichoderma spp. isolated from patchouli rhizosphere (Pogostemon cablin Benth.). Another objective was to perform antagonistic screening of these fungi to inhibit the growth of the wilted pathogen Fusarium spp. In vitro research was conducted in the Laboratory of Plant Pathology, Universitas Syiah Kuala, from January to June 2020. The study used a completely randomised design with five treatments and three replications. The antagonistic screening was carried out by using the dual culture method of Trichoderma spp. against Fusarium spp. with the medium of Potato Dextrose Agar (PDA). The result showed that five isolates of Trichoderma have different antagonistic percentages in inhibiting the Fusarium. The highest antagonistic activity was found from isolate 2 and the lowest value was shown by isolate 3.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-13
Author(s):  
Dwi N Susilowati ◽  
Sri Rahayuningsih ◽  
Indah Sofiana ◽  
Nani Radiastuti

This study aimed to obtain yeast and bacteria from Myristica fragrans Houtt., which have the potential to produce chitinase enzymes with antagonistic ability against Rigidoporus microporous. Both microorganisms were extracted from the leaves and fruit of nutmeg. A total of 35 yeast and 29 bacterial isolates were obtained, with different morphological characters. The chitinolytic test was carried out qualitatively, and the parameters observed include the clear zones around the colony. A total of 4 bacterial isolates produced chitinase enzymes (BP 1.2.1, BP 2.1.1, EPBj II.K1, and EPBj II. K2) with a chitinolytic index of 3.92, 5.38, 2.00, and 1.66, respectively. Yeast isolates were negative for chitinase enzymes. The difference in index value indicated a variation in enzyme activity. The antagonist test was carried out using a dual culture method. A total of 1 yeast and 14 bacterial isolates inhibited the growth of R. microporous, and each has a different inhibitory zone. Based on the percentage of inhibition value, the highest percentage occurred in P.K1(41.1%), P. K2 (50%), dan EPBj II. K6 (42.2%). The antagonist test indicator includes the formation of inhibitory zones on the medium. Hemolysis test showed that yeast and bacteria are not able to break down blood cells in the medium. The molecular identification showed that P. K1 and P. K2 isolates were classified as Bacillus subtillis and EPBj II. K6 were identified as Bacillus aerius with 100% sequence homology and 99% bootstrap value respectively. These findings provided information about potential microbes that control white root fungus.       


2016 ◽  
Vol 8 (2) ◽  
pp. 769-776
Author(s):  
Lakshman Prasad ◽  
Sorabh Chaudhary ◽  
Sushma Sagar ◽  
Akash Tomar

The Fusarium wilt of tomato (Lycopersicon esculentum Mill.) caused by Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder and Hansen is recognised as one of the most devastating disease and major yield limiting factor in tomato growing regions worldwide. For eco-friendly and sustainable management of the disease, 19 Trichoderma native isolates belonging to 3 species of the genus, T. harzianum, T. asperellum and T. virens were evaluated in vitro against the pathogen using dual culture method. Out of 19 isolates, 8 isolates showed mycoparasitism, 8 isolates showed antibiosis and remaining showed lysis. Microscopic observations of Fusarium oxysporum f. sp. lycopersici (FOL) growth in dual cultures revealed that growth inhibition occurred just before near to contact with the antagonist. All T. harzianum isolates tested exhibited coiling around the hyphae of FOL. Isolates of T. harzianum, showed good coiling and growth inhibition of the pathogen. The T. harzianum strains did not differ in coiling pattern and gave somewhat equal coiling performances. Strains of T. asperellum, showed coiling but the coiling pattern of all these strains was different. Only one strain of T. virens showed coiling out of 2 strains. Among them T. harzianum (SVPUTh91) showed the best performance in vitro as biological control agent against FOL followed by T. asperellum and T. virens, resulting in 83, 73 and 65% reduction in colony growth, respectively.


Sign in / Sign up

Export Citation Format

Share Document