scholarly journals ENGINEERING MANAGEMENT OF MACHINE FOR FORMATION OF ARTIFICIAL SHELL ON SEED VEGETABLE CULTURES

2020 ◽  
Vol 61 (2) ◽  
pp. 165-174 ◽  
Author(s):  
I.L. Rogovskii ◽  
L.L. Titova ◽  
V.I. Trokhaniak ◽  
L.I. Marinina ◽  
O.T. Lavrinenko ◽  
...  

The article analyses the universalization of the seed material by its physical and mechanical properties by means of pre-sowing treatment, resulting in the formation of an artificial shell. As a result of the generalization, a technological scheme of obtaining an encapsulated seed and a design of a seed coating machine was proposed. A simulation model of the sowing accuracy process from the internal friction coefficient of seeds at different root mean square deviations of seed sizes is proposed. The regression equation for the influence of the dynamic mode of operation of the developed experimental sample of seed coating machine is established. According to the experimental studies’ results, the static and dynamic friction coefficients of the encapsulated vegetable seeds on the steel and plastic working surfaces of seed coating machine were established. Under the production conditions, experimental tests were conducted to compare the seedlings of untreated, coated, branded and encapsulated seeds of vegetables by the quality of prepared seed material and sowing time.

2021 ◽  
Vol 939 (1) ◽  
pp. 012031
Author(s):  
M Yu Narkevich ◽  
O S Logunova ◽  
P I Kalandarov ◽  
R T Gazieva ◽  
G M Aralov ◽  
...  

Abstract The purpose of the experimental study presented in the work is to generate new knowledge about the quality of concrete samples in a new information field that consolidates information about the results of full-scale tests and video streams that were obtained during active laboratory experiments-studies. When conducting experimental studies, the traditional technology of testing concrete samples for central compression was used. This was accompanied by continuous monitoring and the formation of a video stream for each sample. A distinctive feature of the study is the formation of an information field of experiments, which contains three levels: the level of initial data, the level of analysis of initial data and the level of generation of new knowledge. The level of analysis of the source data using the video stream allows you to obtain information at the end of the experiment that cannot be recorded in real time. For the samples under study, time intervals with different rates of defect development were obtained. The results obtained made it possible to identify new possibilities for the formation of the information field during traditional experimental studies of the quality of concrete images and, based on the information obtained, to identify patterns of development of surface continuity disorders in dynamics. New opportunities for the formation of the information field allow in real time to obtain and process information on the state of concrete and reinforced concrete structures of construction projects by quality indicators and, on the basis of the data obtained, predicting the risk of accidents, including at hazardous production facilities.


2017 ◽  
Vol 2 (3) ◽  
pp. 24-28
Author(s):  
Иван Шаронов ◽  
Ivan Sharonov ◽  
Владимир Курдюмов ◽  
Vladimir Kurdyumov ◽  
Виктор Курушин ◽  
...  

The purpose of research is improving the quality of surface tillage during sowing of winter crops and, as a result, crops yield increasing. Quality compacting soil tillage rinks affect its physical and mechanical properties, such as moisture content, structure, and density, optimum value of which is regulated agronomic requirements for cultivation of specific agricultural crops. These properties affect the quality of seeding and water-air regime of the soil. Therefore, when conducting experimental studies, moisture content, structure, and soil density was controlled to optimize parameters and modes of operation of the rink to bring the above soil properties in compliance with agro-technical requirements. The quality of soil the proposed rink was assessed in comparison with existing rinks. The criterion of quality was the factor of conformity to the standard kcs, which characterizes the compliance of the density and structure of the soil reference values established by the agrotechnical requirements. The result of the research revealed that the maximum value of kcs = 0.84 is achieved at a speed ofv = 11 km/h and the ballast mass m = 78 kg. After tillage rinks seeder the factor of conformity to the standard kcs = 0.68; after soil tillage the existing rink kcs = 0.71; and after the processing of the proposed soil-cultivating rink the factor of conformity to the standard amounted to kcs = 0.84, which is significantly higher than after soil tillage of existing rink. While the specific metal content of the proposed ice rink will not exceed 116 kg per 1 m of width, which is 2.4 times less than that of the rink 3CCH-6 (283.6 kg/m).


2021 ◽  
Vol 410 ◽  
pp. 817-822
Author(s):  
Ruslan R. Khasanshin ◽  
Ruslan R. Safin ◽  
Shamil R. Mukhametzyanov

Today, glued timber products occupy a significant place in the volume of finished products of modern construction and woodworking enterprises. Plywood is one such product. The durability and structural characteristics of plywood depend on the quality of binder, the type of wood and the quality of veneer. The paper explores the technology of ultraviolet treatment of thermally modified birch veneer with subsequent production of waterproof plywood. The results of a study on the influence of the operating parameters of veneer modification on the complex of sorption and strength characteristics of plywood materials are presented. It is established that the combination of thermal modification of wood throughout the entire volume with surface treatment with ultraviolet radiation allows creating glued wood material with increased water resistance and high-quality adhesive interaction.


2021 ◽  
Vol 62 (4) ◽  
pp. 340-348
Author(s):  
Leonid Dvorkin ◽  
Lyudmila Nihaeva

The paper presents the results of experimental studies of the possibility of obtaining modified supersulfate cements (SSC) with improved physical and mechanical properties on lowalumina blast-furnace granular slags. It has been shown in comparative experimental tests of the effect of admixtures of various sulfate activators that the highest strength of cements is achieved when using a phosphogypsum neutralized with lime. An additional activating effect has been established for supersulfated cements with the introduction of admixtures fluorides and, in particular, fluorides of magnesium, calcium and sodium silicofluoride. The additional introduction of hardening accelerators and their compositions with a superplasticizer into the SSC composition makes it possible to increase the compressive strength of cements at 28 days of age up to 60-65 MPa while achieving high strength at an early age. Along with standard tests, experiments were performed using mathematical planning with obtaining adequate regression equations.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5245
Author(s):  
Łukasz Bohdal ◽  
Leon Kukiełka ◽  
Radosław Patyk ◽  
Rafał Gryglicki ◽  
Piotr Kasprzak

This work presents experimental studies aiming at the development of new technology and guidelines for shaping labels from polypropylene multilayer foil using an ultraviolet (UV) laser cutting operation. Currently on production lines, the shaping of labels is undertaken by mechanical cutting or laser cutting, taking into account the phenomenon of hot ablation. These technologies cause many problems such as burr formation on labels sheared edges, rapid tool wear, or heat-affected zone (HAZ) formation. The experimental tests were carried out on a specially designed laser system for cutting polypropylene foil using the phenomenon of cold ablation. Parametric analyses were conducted for several foil thicknesses t = 50, 60, 70 and 80 µm. The process parameters were optimized in terms of high efficiency and high labels-cut surface quality. A new criterion has been developed for assessing the quality of UV laser cutting of polypropylene foils. The results indicate a significant effect of the cutting speed and laser frequency on the width of the degraded zone on the sheet cut edge. As a result of a developed optimization task and reverse task solution it is possible to cut labels at high speeds (v = 1.5 m/s) while maintaining a high quality of cut edge free of carbon, delamination and color changes. A degraded zone does not exceed in the examined cases s ≤ 0.17 mm.


2008 ◽  
Vol 59 (5) ◽  
Author(s):  
Mirela Dulama ◽  
Nicoleta Deneanu ◽  
Cristian Dulama ◽  
Margarit Pavelescu

The paper presents the experimental tests concerning the treatment by membrane techniques of radioactive aqueous waste. Solutions, which have been treated by using the bench-scale installation, were radioactive simulated secondary wastes from the decontamination process with modified POD. Generally, an increasing of the retention is observed for most of the contaminants in the reverse osmosis experiments with pre-treatment steps. The main reason for taking a chemical treatment approach was to selectively remove soluble contaminants from the waste. In the optimization part of the precipitation step, several precipitation processes were compared. Based on this comparison, mixed [Fe(CN)6]4-/Al3+/Fe2+ was selected as a precipitation process applicable for precipitation of radionuclides and flocculation of suspended solid. Increased efficiencies for cesium radionuclides removal were obtained in natural zeolite adsorption pre-treatment stages and this was due to the fact that volcanic tuff used has a special affinity for this element. Usually, the addition of powdered active charcoal serves as an advanced purifying method used to remove organic compounds and residual radionuclides; thus by analyzing the experimental data (for POD wastes) one can observe a decreasing of about 50% for cobalt isotopes subsequently to the active charcoal adsorption.. The semipermeable membranes were used, which were prepared by the researchers from the Research Center for Macromolecular Materials and Membranes, Bucharest. The process efficiency was monitored by gamma spectrometry.


Author(s):  
T. N. Antipova ◽  
D. S. Shiroyan

The system of indicators of quality of carbon-carbon composite material and technological operations of its production is proved in the work. As a result of the experimental studies, with respect to the existing laboratory equipment, the optimal number of cycles of saturation of the reinforcing frame with a carbon matrix is determined. It was found that to obtain a carbon-carbon composite material with a low cost and the required quality indicators, it is necessary to introduce additional parameters of the pitch melt at the impregnation stage.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 626
Author(s):  
Riccardo Scazzosi ◽  
Marco Giglio ◽  
Andrea Manes

In the case of protection of transportation systems, the optimization of the shield is of practical interest to reduce the weight of such components and thus increase the payload or reduce the fuel consumption. As far as metal shields are concerned, some investigations based on numerical simulations showed that a multi-layered configuration made of layers of different metals could be a promising solution to reduce the weight of the shield. However, only a few experimental studies on this subject are available. The aim of this study is therefore to discuss whether or not a monolithic shield can be substituted by a double-layered configuration manufactured from two different metals and if such a configuration can guarantee the same perforation resistance at a lower weight. In order to answer this question, the performance of a ballistic shield constituted of a layer of high-strength steel and a layer of an aluminum alloy impacted by an armor piercing projectile was investigated in experimental tests. Furthermore, an axisymmetric finite element model was developed. The effect of the strain rate hardening parameter C and the thermal softening parameter m of the Johnson–Cook constitutive model was investigated. The numerical model was used to understand the perforation process and the energy dissipation mechanism inside the target. It was found that if the high-strength steel plate is used as a front layer, the specific ballistic energy increases by 54% with respect to the monolithic high-strength steel plate. On the other hand, the specific ballistic energy decreases if the aluminum plate is used as the front layer.


2021 ◽  
Vol 11 (11) ◽  
pp. 5008
Author(s):  
Juan José del Coz-Díaz ◽  
Felipe Pedro Álvarez-Rabanal ◽  
Mar Alonso-Martínez ◽  
Juan Enrique Martínez-Martínez

The thermal inertia properties of construction elements have gained a great deal of importance in building design over the last few years. Many investigations have shown that this is the key factor to improve energy efficiency and obtain optimal comfort conditions in buildings. However, experimental tests are expensive and time consuming and the development of new products requires shorter analysis times. In this sense, the goal of this research is to analyze the thermal behavior of a wall made up of lightweight concrete blocks covered with layers of insulating materials in steady- and transient-state conditions. For this, numerical and experimental studies were done, taking outdoor temperature and relative humidity as a function of time into account. Furthermore, multi-criteria optimization based on the design of the experimental methodology is used to minimize errors in thermal material properties and to understand the main parameters that influence the numerical simulation of thermal inertia. Numerical Finite Element Models (FEM) will take conduction, convection and radiation phenomena in the recesses of lightweight concrete blocks into account, as well as the film conditions established in the UNE-EN ISO 6946 standard. Finally, the numerical ISO-13786 standard and the experimental results are compared in terms of wall thermal transmittance, thermal flux, and temperature evolution, as well as the dynamic thermal inertia parameters, showing a good agreement in some cases, allowing builders, architects, and engineers to develop new construction elements in a short time with the new proposed methodology.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2125 ◽  
Author(s):  
Janusz Tomczak ◽  
Zbigniew Pater ◽  
Tomasz Bulzak

This paper presents selected numerical and experimental results of a skew rolling process for producing balls using helical tools. The study investigates the effect of the billet’s initial temperature on the quality of produced balls and the rolling process itself. In addition, the effect of billet diameter on the quality of produced balls is investigated. Experimental tests were performed using a helical rolling mill available at the Lublin University of Technology. The experiments consisted of rolling 40 mm diameter balls with the use of two helical tools. To determine optimal rolling parameters ensuring the highest quality of produced balls, numerical modelling was performed using the finite element method in the Forge software. The numerical analysis involved the determination of metal flow kinematics, temperature and damage criterion distributions, as well as the measurement of variations in the force parameters. The results demonstrate that the highest quality balls are produced from billet preheated to approximately 1000 °C.


Sign in / Sign up

Export Citation Format

Share Document