scholarly journals The Influence of Glass Cover Shape on Clean Water Productivity on Seawater Distillation Equipment

Author(s):  
Nita C.V. Monintja

Current conditions of a lack of clean water, abundant seawater, and the ready availability of solar radiation energy contribute to the need to develop solar-powered seawater distillation technology. This research was conducted to determine the effect of the glass cover shape on the solar still distillation equipment productivity of clean water, and was carried out in May 2019 at the Faculty of Engineering, Sam Ratulangi University, Manado. The study used 100 cm long and 50 cm wide, a 3 mm thick glass cover angled at 17 degrees from the top of the basin. Observations were made with two treatments, including a one-sided glass cover and a two-sided glass cover. Temperature data were taken from the glass cover, water in the basin, solar radiation, and the clean water temperature every 10 minutes from 0805 to 1705 hrs. The results of the study show that more water is produced with a one-sided glass cover than with the two-sided cover. The average amount of clean water produced in a day was 2,393.3 ml with the one-sided cover and 2,265 ml with the two-sided glass cover. The one-sided glass cover had an efficiency of 68.27% and the two-sided glass cover had an efficiency of 62.50%.

JTAM ROTARY ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 13
Author(s):  
Agung Wibowo ◽  
Mastiadi Tamjidillah

Distilasi matahari merupakan suatu alat yang memanfaatkan energi radiasi matahari sebagai sumber panasnya. Penelitian ini membandingkan destilasi surya tipe penutup kaca 1 sisi dan 2 sisi dengan penyerap tembaga. Tujuan dari penelitian ini adalah untuk mengetahui perpindahan kalor yang terjadi, produktivitas air yang dihasilkan dan kualitas air yang dihasilkan. Penelitian dilakukan selama 4 hari. Hasil penelitian menunjukkan bahwa distilasi surya dengan penutup kaca 1 sisi lebih baik dibandingkan dengan penutup kaca 2 sisi. Ini terlihat dari produktivitas air yang dihasilkan. Distilasi surya dengan penutup kaca 1 sisi memiliki produktivitas air 468 ml, sedangkan destilasi surya dengan penutup kaca 2 sisi hanya 450 ml. Perpindahan panas konduksi tertinggi terjadi pada distilasi surya dengan penutup kaca 1 sisi sebesar 4064,6 Watt. Untuk konveksi perpindahan panas tertinggi terjadi pada destilasi surya dengan penutup kaca 1 sisi yaitu 0,16 Watt. Perpindahan panas radiasi tertinggi terjadi pada destilasi surya dengan penutup kaca 1 sisi sebesar 34,7 Watt. Hasil penelitian kualitas air yang dihasilkan oleh kedua distilasi surya tersebut adalah air tersebut dapat dikategorikan sebagai air bersih. Solar distillation is a device that utilizes solar radiation energy as a source of heat. This research compares solar distillation with 1 sided and 2 sided glass cover type with copper absorber. The purpose of this research is to determine the heat transfer that occurs, the productivity of the water produced and the quality of water produced. Research is doing for 4 days. The results of this research that solar distillation with 1 sided glass cover is better to 2 sided glass cover. This is seen from the productivity of the water produced. Solar distillation with 1 sided glass cover has a water productivity of 468 ml, while solar distillation with 2 sided glass cover is only 450 ml. The highest conduction heat transfer is in solar distillation with 1 sided glass cover is 4064.6 Watts. For the highest convection heat transfer is in solar distillation with 1 sided glass cover is 0.16 Watt. The highest radiation heat transfer is in solar distillation with 1 sided glass cover is 34.7 Watts. The results of research the quality of water produced by both solar distillation is that the water can be categorized as clean water.


2003 ◽  
Vol 125 (1) ◽  
pp. 76-82 ◽  
Author(s):  
T. D. Short ◽  
R. Oldach

Solar (photovoltaic) powered water pumps could be a real instrument for the alleviation of water related deaths and illnesses in developing countries through the provision of clean water. However, despite the benefits that access to sustainable potable water supplies can bring, solar powered water pumps have a long way to go before they even begin to meet the needs of those who could use them. This paper addresses some of the complex, inter-related social and technical issues that have prevented solar powered water pumping from reaching its full potential and shows how future efforts should be directed in order to respond to these issues.


1971 ◽  
Vol 12 ◽  
pp. 413-421 ◽  
Author(s):  
B.G. Marsden

There has long been speculation as to whether comets evolve into asteroidal objects. On the one hand, in the original version of the Oort (1950) hypothesis, the cometary cloud was supposed to have formed initially from the same material that produced the minor planets; and an obvious corollary was that the main physical difference between comets and minor planets would be that the latter had long since lost their icy surfaces on account of persistent exposure to strong solar radiation (Öpik, 1963). However, following a suggestion by Kuiper (1951), it is now quite widely believed that, whereas the terrestrial planets and minor planets condensed in the inner regions of the primordial solar nebula, icy objects such as comets would have formed more naturally in the outer parts, perhaps even beyond the orbit of Neptune (Cameron, 1962; Whipple, 1964a). Furthermore, recent studies of the evolution of the short-period comets indicate that it is not possible to produce the observed orbital distribution from the Oort cloud, even when multiple encounters with Jupiter are considered (Havnes, 1970). We must now seriously entertain the possibility that most of the short-period orbits evolved directly from low-inclination, low-eccentricity orbits with perihelia initially in the region between, say, the orbits of Saturn and Neptune, and that these comets have never been in the traditional cloud at great distances from the Sun.


2020 ◽  
Vol 12 (4) ◽  
pp. 185
Author(s):  
Lana Mousa Abu-Nowar

This paper aimed at assessing the economic and financial viability of solar-powered irrigation of tomato crop in Jordan Valley. Data were collected from 16 tomato farms that use solar-powered irrigation system. Another 16 farms with diesel-powered irrigation system was investigated for comparative reasons. Descriptive statistics, Cost Function Analysis (CFA), Life-cycle Cost Analysis (LCCA), Water Productivity (WP) and the financial indicators of Net Present Value (NPV), Internal Rate of Return (IRR), Payback Period (PP) and Benefit to Cost Ratio (B/C) were the main economic and financial analytical tools used in this study. The results of the study revealed that costs of inputs, labor costs and equipment and maintenance costs have had a lower adverse impact on the total revenues level when using solar-powered irrigation system. The results also indicated the preference of the investigated financial indicators (NPV, IRR, PP and B/C ratio) when solar-powered irrigation is used compared to diesel-powered irrigation. The results also revealed a lower cost of life of the farm under the use of solar-powered irrigation. The governmental policies and programs should be directed toward the concepts of renewable energy in general and solar energy uses in agriculture in particular. Special agricultural extension plans in training and capacity building of farmers and extension workers on the use of solar energy in irrigation of agricultural crops should be developed. Cooperation in the fields of solar energy between the Ministry of Agriculture and related parties such as the Royal Scientific Society and the Ministry of Energy should be initiated to conduct specialized researches in the fields of solar energy use in agriculture.


Author(s):  
Syarifudin A. ◽  
Imam Santoso

Abstract: The Effectiveness of Rice Husk Ash Filter to Reduce Turbidity of Martapura River Water. Martapura River water is used by people living on riverbanks for cooking, washing, bathing, and others. The main problem of Martapura river water is the turbidity which is relatively high so it needs to be processed first before use. The preliminary test conducted on August 15, 2016 shows the value of turbidity of Martapura river water at 38.9 NTU. This research was an experimental research with the one group pretest and posttest design which aimed to determine the effectiveness of the filter to reduce the turbidity of Martapura river water. The medium used was rice husk ash with variation of thickness were 13 cm, 26 cm, and 39 cm. The effectiveness of filtration was determined by comparing the turbidity of water filtered with standards. The turbidity of Martapura river water before filtered was 35.7 NTU. After filtered by 13 cm, 26 cm and 39 cm filter, the turbidity of water decreased consecutive to 2.97 NTU, 1.17 NTU, and 0.95 NTU, with decreasing percentages respectively of 91.7%, 96.7% and 97.3%. All filtered water showed turbidity fulfilled both the standar of clean water and drinking water so that rice husk ash filter was effective decreased turbidity of Martapura river water. Filtered water is recommended to be cooked first to boil when used for drinking water because the number of bacteria of Coli has not been studied. Further research needs to be conducted by adding other parameters according to water quality standard


2018 ◽  
Vol 20 (5) ◽  
pp. 321-323
Author(s):  
Sh. Payziyev ◽  
Kh. Makhmudov ◽  
S. Bakhramov ◽  
A. Kasimov

On the basis of the active element of Ti3+:Al2O3, the possibility of converting solar energy into laser radiation energy is investigated. By the computer simulations, it was shown the possibility of reducing the threshold pump power by choosing the optimal geometry of the crystal parameters for end-pumping scheme of concentrated solar radiation.


2010 ◽  
Vol 18 (3) ◽  
pp. 188-195 ◽  
Author(s):  
Algimantas Sirvydas ◽  
Vidmantas Kučinskas ◽  
Paulius Kerpauskas ◽  
Jūratė Nadzeikienė ◽  
Albinas Kusta

Solar radiation energy is used by vegetation, which predetermines the existence of biosphere. The plant uses 1–2% of the absorbed radiant energy for photosynthesis. All the remaining share of the absorbed energy, accounting for 99–98%, converts into thermal energy in the plant leaf. At the lowest wind under natural surrounding air conditions, plant leaves change their position with respect to the Sun. An oscillating plant leaf receives a variable amount of solar radiation energy, which causes changes in the balance of plant leaf energies and a changing emission of heat in the leaf. The analysis of solar radiation energy pulsations in the plant leaf shows that when the leaf is in the edge positions of angles 10°, 20° and 30° with respect to the Sun, 1.5%; 6% and 13% less of radiation energy reach the leaf, respectively. During periodic motion, when the amplitude of leaf oscillation is no bigger than 10°, the plant surface receives up to 1.6% less of solar radiation energy within a certain period of time, and when the amplitude of oscillation reaches 30° up to 14% less of solar radiation energy reach the leaf surface. The total amount of radiant energy received during pulsations of solar radiation energy is not dependent on the frequency of oscillation in the same interval of time. Temperature pulsations occur in the leaf due to solar radiation energy pulsations when the plant leaf naturally changes its position with respect to the Sun. Santrauka Saules spinduliuotes energija būtina augalijai, kuri lemia biosferos egzistavima. Augalas 1–2 % absorbuotos spinduliuotes energijos sunaudoja fotosintezei, o 99–98 % absorbuotos energijos augalo lape virsta šilumine energija. Natūraliomis aplinkos salygomis esant mažiausiam vejui augalo lapu padetis Saules atžvilgiu keičiasi. Taigi augalo svyruojančio lapo gaunamas Saules spinduliuotes energijos kiekis yra kintamas, tai sukelia pokyčius augalo lapo energiju balanse ir kintama šilumos išsiskyrima lape. Analizuojant Saules spinduliuotes energijos pulsacijas augalo lape, nustatyta, kad, lapui esant kraštinese 10°, 20° ir 30° kampu padetyse Saules atžvilgiu, i ji atitinkamai patenka 1,5 %; 6 % ir 13 % mažiau spinduliuotes energijos. Augalo lapui periodiškai svyruojant, kai svyravimo amplitude yra iki 10°, per tam tikra laika i lapo paviršiu patenka iki 1,6 % mažiau Saules spinduliuotes energijos, o kai svyravimo amplitu‐de siekia iki 30°, – iki 14 % mažiau. Saules spinduliuotes energijos pulsaciju metu gautas bendras spinduliuotes energijos kiekis nepriklauso nuo to paties laiko intervalo svyravimo dažnio. Del Saules spinduliuotes energijos pulsaciju, natūraliai keičiantis augalo lapo padečiai Saules atžvilgiu, lape kyla temperatūros pulsacijos. Резюме Растения потребляют солнечную лучевую энергию, которая является основой существования биосферы. 1–2% абсорбированной лучевой энергии они используют на фотосинтез. В натуральных условиях при малейшем дуновении ветра листья растений меняют свое положение относительно Солнца. Колеблющийся лист получает переменное количество лучевой энергии, которое вызывает изменения в энергетическом балансе листа растения, что сказывается на переменном выделении тепла в листе. Анализируя пульсации солнечной лучевой энергии в листе растения, установлено, что при крайних положениях листа относительно Солнца на 10, 20 и 30 градусов на лист попадает соответственно на 1,5%, 6% и 13% меньше лучевой энергии. При периодическом колебании листа, когда амплитуда его колебания составляет 10 градусов, за известный промежуток времени солнечная лучевая энергия, попадающая на поверхность листа, уменьшается до 1,6%, а при амплитуде колебания до 30 градусов соответственно количество лучевой энергии на поверхности листа растения уменьшается до 14%. Установлено, что суммарное количество солнечной лучевой энергии во время пульсации не зависит от частоты колебания листа за одинаковый промежуток времени. Пульсации солнечной лучевой энергии при изменении положения листа растения относительно Солнца вызывают температурные пульсации в листе.


Climate ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 26
Author(s):  
Jérémy Bernard ◽  
Pascal Kéravec ◽  
Benjamin Morille ◽  
Erwan Bocher ◽  
Marjorie Musy ◽  
...  

Shelters used to protect air temperature sensors from solar radiation induce a measurement error. This work presents a semi-empirical model based on meteorological variables to evaluate this error. The model equation is based on the analytical solution of a simplified energy balance performed on a naturally ventilated shelter. Two main physical error causes are identified from this equation: one is due to the shelter response time and the other is due to its solar radiation sensitivity. A shelter intercomparison measurement campaign performed by the World Meteorological Organization (WMO) is used to perform a non-linear regression of the model coefficients. The regression coefficient values obtained for each shelter are found to be consistent with their expected physical behavior. They are then used to simply classify shelters according to their response time and radiation sensitivity characteristics. Finally, the ability of the model to estimate the temperature error within a given shelter is assessed and compared to the one of two existing models (proposed by Cheng and by Nakamura). For low-response-time shelters, our results reduce the root mean square error by about 15% (0.07 K) on average when compared with other compensation schemes.


Sign in / Sign up

Export Citation Format

Share Document