scholarly journals SIMULATION AND EXPERIMENTAL RESEARCH OF CLAW POLE MACHINE WITH A HYBRID EXCITATION AND LAMINATED ROTOR CORE

Author(s):  
Marcin Wardach ◽  
Paweł Prajzendanc ◽  
Kamil Cierzniewski ◽  
Michał Cichowicz ◽  
Szymon Pacholski ◽  
...  

This paper presents the design and research results of a claw pole machine with hybrid excitation. This machine is excited by permanent magnets and an electromagnetic coil. Both excitation sources are located in the rotor of the machine. Additionally, the rotor is made of a laminated core. This approach facilitates the process of its construction and enables the implementation of even very complicated structure of the rotor, which would be difficult in case of making the rotor from a one piece of material. This paper presents the construction as well as the results of simulation and experimental tests of the machine prototype. The tests showed that the proposed machine has the ability to adjust the voltage in a wide range. Such as a feature could be used, for example, to increase the speed of motor operation in case of an electric vehicle application, but also to regulate the voltage in wind turbines which generators operate at varying rotor speeds resulting from changing wind speed.

2020 ◽  
Vol 12 (20) ◽  
pp. 8481
Author(s):  
Ahmed G. Abo-Khalil ◽  
Ali M. Eltamaly ◽  
Praveen R.P. ◽  
Ali S. Alghamdi ◽  
Iskander Tlili

Currently, among the topologies of wind energy conversion systems, those based on full power converters are growing. The permanent magnet synchronous generator (PMSG) uses full power converter to allow wide speed ranges to extract the maximum power from the wind. In order to obtain efficient vector control in a synchronous generator with permanent magnets, it is necessary to know the position of the rotor. The PMSGs work over a wide range of speed, and it is mandatory to measure or estimate their speed and position. Usually, the position of the rotor is obtained through Resolver or Encoder. However, the presence of these sensor elements increases the cost, in addition to reducing the system’s reliability. Moreover, in high wind power turbine, the measured wind speed by the anemometer is taken at the level of the blades which makes the measurement of the wind speed at a single point inaccurate. This paper is a study on the sensorless control that removes the rotor position, speed sensors and anemometer from the speed control. The estimation of the rotor position is based on the output of a rotor current controller and the wind speed estimator is based on the opposition-based learning (OBL), particle swarm optimization and support vector regression.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 233
Author(s):  
Ambra Nanni ◽  
Sergio Cristallo ◽  
Jacco Th. van Loon ◽  
Martin A. T. Groenewegen

Background: Most of the stars in the Universe will end their evolution by losing their envelope during the thermally pulsing asymptotic giant branch (TP-AGB) phase, enriching the interstellar medium of galaxies with heavy elements, partially condensed into dust grains formed in their extended circumstellar envelopes. Among these stars, carbon-rich TP-AGB stars (C-stars) are particularly relevant for the chemical enrichment of galaxies. We here investigated the role of the metallicity in the dust formation process from a theoretical viewpoint. Methods: We coupled an up-to-date description of dust growth and dust-driven wind, which included the time-averaged effect of shocks, with FRUITY stellar evolutionary tracks. We compared our predictions with observations of C-stars in our Galaxy, in the Magellanic Clouds (LMC and SMC) and in the Galactic Halo, characterised by metallicity between solar and 1/10 of solar. Results: Our models explained the variation of the gas and dust content around C-stars derived from the IRS Spitzer spectra. The wind speed of the C-stars at varying metallicity was well reproduced by our description. We predicted the wind speed at metallicity down to 1/10 of solar in a wide range of mass-loss rates.


Author(s):  
Mirko Baratta ◽  
Stefano d’Ambrosio ◽  
Daniela Misul ◽  
Ezio Spessa

An experimental investigation and a burning-rate analysis have been performed on a production 1.4 liter CNG (compressed natural gas) engine fueled with methane-hydrogen blends. The engine features a pent-roof combustion chamber, four valves per cylinder and a centrally located spark plug. The experimental tests have been carried out in order to quantify the cycle-to-cycle and the cylinder-to-cylinder combustion variation. Therefore, the engine has been equipped with four dedicated piezoelectric pressure transducers placed on each cylinder and located by the spark plug. At each test point, in-cylinder pressure, fuel consumption, induced air mass flow rate, pressure and temperature at different locations on the engine intake and exhaust systems as well as ‘engine-out’ pollutant emissions have been measured. The signals correlated to the engine operation have been acquired by means of a National Instruments PXI-DAQ system and a home developed software. The acquired data have then been processed through a combustion diagnostic tool resulting from the integration of an original multizone thermodynamic model with a CAD procedure for the evaluation of the burned-gas front geometry. The diagnostic tool allows the burning velocities to be computed. The tests have been performed over a wide range of engine speeds, loads and relative air-fuel ratios (up to the lean operation). For stoichiometric operation, the addition of hydrogen to CNG has produced a bsfc reduction ranging between 2 to 7% and a bsTHC decrease up to the 40%. These benefits have appeared to be even higher for lean mixtures. Moreover, hydrogen has shown to significantly enhance the combustion process, thus leading to a sensibly lower cycle-to-cycle variability. As a matter of fact, hydrogen addition has generally resulted into extended operation up to RAFR = 1.8. Still, a discrepancy in the abovementioned conclusions was observed depending on the engine cylinder considered.


2014 ◽  
Vol 21 (2) ◽  
pp. 379-392 ◽  
Author(s):  
R. Calif ◽  
F. G. Schmitt

Abstract. We consider here wind speed time series and the aggregate output wind power from a wind farm. We study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. We estimate their Fourier power spectra and consider their scaling properties in the physical space. We show that the atmospheric wind speed and the aggregate power output from a wind farm are intermittent and multifractal over a wide range of scales. The coupling between simultaneous data of the wind speed and aggregate power output is investigated through a joint multifractal description using the generalized correlation functions (GCFs). This multiscaling test is compatible with a linear relation between the wind speed and the aggregate power output fluctuations for timescales T ⩾ 103 s ≃ 15 min.


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 422 ◽  
Author(s):  
Alexander Rautenberg ◽  
Martin Graf ◽  
Norman Wildmann ◽  
Andreas Platis ◽  
Jens Bange

One of the biggest challenges in probing the atmospheric boundary layer with small unmanned aerial vehicles is the turbulent 3D wind vector measurement. Several approaches have been developed to estimate the wind vector without using multi-hole flow probes. This study compares commonly used wind speed and direction estimation algorithms with the direct 3D wind vector measurement using multi-hole probes. This was done using the data of a fully equipped system and by applying several algorithms to the same data set. To cover as many aspects as possible, a wide range of meteorological conditions and common flight patterns were considered in this comparison. The results from the five-hole probe measurements were compared to the pitot tube algorithm, which only requires a pitot-static tube and a standard inertial navigation system measuring aircraft attitude (Euler angles), while the position is measured with global navigation satellite systems. Even less complex is the so-called no-flow-sensor algorithm, which only requires a global navigation satellite system to estimate wind speed and wind direction. These algorithms require temporal averaging. Two averaging periods were applied in order to see the influence and show the limitations of each algorithm. For a window of 4 min, both simplifications work well, especially with the pitot-static tube measurement. When reducing the averaging period to 1 min and thereby increasing the temporal resolution, it becomes evident that only circular flight patterns with full racetracks inside the averaging window are applicable for the no-flow-sensor algorithm and that the additional flow information from the pitot-static tube improves precision significantly.


2015 ◽  
Vol 4 (2) ◽  
pp. 149-154 ◽  
Author(s):  
A. M. Prystai ◽  
V. O. Pronenko

Abstract. The study of the deep structure of the Earth's crust is of great interest for both applied (e.g. mineral exploration) and scientific research. For this the electromagnetic (EM) studies which enable one to construct the distribution of electrical conductivity in the Earth's crust are of great use. The most common method of EM exploration is magnetotelluric sounding (MT). This passive method of research uses a wide range of natural geomagnetic variations as a powerful source of electromagnetic induction in the Earth, producing telluric current variations there. It includes the measurements of variations of natural electric and magnetic fields in orthogonal directions at the surface of the Earth. By this, the measurements of electric fields are much more complicated metrological processes, and, namely, they limit the precision of MT prospecting. This is especially complicated at deep sounding when measurements of long periods are of interest. The increase in the accuracy of the electric field measurement can significantly improve the quality of MT data. Because of this, the development of a new version of an instrument for the measurements of electric fields at MT – both electric field sensors and the electrometer – with higher levels relative to the known instrument parameter level – was initiated. The paper deals with the peculiarities of this development and the results of experimental tests of the new sensors and electrometers included as a unit in the long-period magnetotelluric station LEMI-420 are given.


2021 ◽  
Vol 23 (1) ◽  
pp. 45
Author(s):  
S. Eskandarsefat ◽  
P. Caputo ◽  
C. Oliviero Rossi ◽  
R. Vaiana ◽  
C. Sangiorgi

This paper deals with the fundamental differences between industrial and paving-grade bituminous binders. The paper is presented in two main sections: 1) a review of the materials’ colloidal structure and the required properties for the industrial and paving applications; 2) a wide range of experimental tests with which the bituminous binders were studied and compared. In this research, a 160/220 industrial bitumen was studied and compared to a paving-grade bitumen with the same penetration and with a lower penetration, 70/100 one. The research consisted of physical, chemical, thermal, microstructural, and rheological analysis to provide a comprehensive understanding of these bituminous binders of diverse applications. Overall, the comparison of the tests’ results indicated that while the asphaltene content and its characteristics have a great influence on the bitumen’s properties, it is not the only fundamental factor. During the study of the chemical structures via Atomic Force Microscopy (AFM), it was found that the Peri phase (attributed to the resins) also plays an important role, defining the bitumen’s physical visco-elastic properties. In fact, from a microstructural point of view using AFM a significant difference was notified between the industrial bitumen and the paving-grade ones. These differences allow the paving-grade bitumens to be more elastic and ductile compared to the industrial bitumen.


2018 ◽  
Vol 35 ◽  
pp. 1-12
Author(s):  
Cynthia Diniz Souza ◽  
Vandick S. Batista ◽  
Nidia Noemi Fabré

Seasonal ecological effects caused by temperature and photoperiod are typically considered minimal in the tropics. Nevertheless, annual climate cycles may still influence the distribution and abundance of tropical species. Here, we investigate whether seasonal patterns of precipitation and wind speed influence the structure of coastal fish assemblages and fishing yields in northeast Brazil. Research trips were conducted during the rainy and dry seasons using commercial boats and gear to sample the fish community. Diversity was analyzed using abundance Whittaker curves, diversity profiles and the Shannon index. Principal Component Analysis (PCA) was used to analyze associations between the abundance of species and various environmental variables related to seasonality. A total of 2,373 fish were collected, representing 73 species from 34 families – 20 of which were classified as both frequent and abundant. Species richness was greater and more equitable during the rainy season than the dry season – driven by changes in the precipitation rather than to wind speed. Species diversity profiles were slightly greater during the rainy season than the dry season, but this difference was not statistically significant. Using PCA was identified three groups of species: the first associated with wind speed, the second with precipitation, and the third with a wide range of sampling environments. This latter group was the largest and most ecologically heterogeneous. We conclude that tropical coastal fish assemblages are largely influenced by local variables, and seasonally mediated by annual changes related to precipitation intensity and wind speed, which in turn influences fishery yields.


Author(s):  
Minoru Chino ◽  
Kenji Takizawa ◽  
Takashi Yabe

This paper provides the experimental results on skimmer and gives some detailed information useful for benchmark test of computer codes that are now able to simulate the fluid-structure interaction. For this purpose, we specially designed the injection system that imposes reproducible rotational speed and injection speed on the skipper. The effect of rotation is discussed by changing rotation speed in a wide range.


Sign in / Sign up

Export Citation Format

Share Document