Flexible short-channel organic transistors and inverter circuits using top-contact and double-gate structure

2020 ◽  
Vol 13 (6) ◽  
pp. 061001
Author(s):  
Sunghoon Lee ◽  
Wonryung Lee ◽  
Tomoyuki Yokota ◽  
Takao Someya
2009 ◽  
Vol E92-C (5) ◽  
pp. 659-663 ◽  
Author(s):  
Doo-Hyun KIM ◽  
Il Han PARK ◽  
Seongjae CHO ◽  
Jong Duk LEE ◽  
Hyungcheol SHIN ◽  
...  

2017 ◽  
Vol 2 (2) ◽  
pp. 15-19 ◽  
Author(s):  
Md. Saud Al Faisal ◽  
Md. Rokib Hasan ◽  
Marwan Hossain ◽  
Mohammad Saiful Islam

GaN-based double gate metal-oxide semiconductor field-effect transistors (DG-MOSFETs) in sub-10 nm regime have been designed for the next generation logic applications. To rigorously evaluate the device performance, non-equilibrium Green’s function formalism are performed using SILVACO ATLAS. The device is turn on at gate voltage, VGS =1 V while it is going to off at VGS = 0 V. The ON-state and OFF-state drain currents are found as 12 mA/μm and ~10-8 A/μm, respectively at the drain voltage, VDS = 0.75 V. The sub-threshold slope (SS) and drain induced barrier lowering (DIBL) are ~69 mV/decade and ~43 mV/V, which are very compatible with the CMOS technology. To improve the figure of merits of the proposed device, source to gate (S-G) and gate to drain (G-D) distances are varied which is mentioned as underlap. The lengths are maintained equal for both sides of the gate. The SS and DIBL are decreased with increasing the underlap length (LUN). Though the source to drain resistance is increased for enhancing the channel length, the underlap architectures exhibit better performance due to reduced capacitive coupling between the contacts (S-G and G-D) which minimize the short channel effects. Therefore, the proposed GaN-based DG-MOSFETs as one of the excellent promising candidates to substitute currently used MOSFETs for future high speed applications.


2007 ◽  
Vol 54 (8) ◽  
pp. 1943-1952 ◽  
Author(s):  
A. Tsormpatzoglou ◽  
C.A. Dimitriadis ◽  
R. Clerc ◽  
Q. Rafhay ◽  
G. Pananakakis ◽  
...  

Author(s):  
Ameer F. Roslan ◽  
F. Salehuddin ◽  
A.S. M.Zain ◽  
K.E. Kaharudin ◽  
H. Hazura ◽  
...  

<p>This paper presents an investigation on properties of Double Gate FinFET (DGFinFET) and impact of physical properties of FinFET towards short channel effects (SCEs) for 30 nm device, where depletion-layer widths of the source-drain corresponds to the channel length aside from constant fin height (HFIN) and the fin thickness (TFIN). Virtual fabrication process of 3-dimensional (3D) design is applied throughout the study and its electrical characterization is employed and substantial is shown towards the FinFET design whereby in terms of the ratio of drive current against the leakage current (ION/IOFF ratio) at 563138.35 compared to prediction made by the International Technology Roadmap Semiconductor (ITRS) 2013. Conclusively, the incremental in ratio has fulfilled the desired in incremental on the drive current as well as reductions of the leakage current. Threshold voltage (VTH) meanwhile has also achieved the nominal requirement predicted by the International Technology Roadmap Semiconductor (ITRS) 2013 for which is at 0.676±12.7% V. The ION , IOFF and VTH obtained from the device has proved to meet the minimum requirement by ITRS 2013 for low performance Multi-Gate technology.</p>


2018 ◽  
Vol 32 (15) ◽  
pp. 1850157 ◽  
Author(s):  
Yue-Gie Liaw ◽  
Chii-Wen Chen ◽  
Wen-Shiang Liao ◽  
Mu-Chun Wang ◽  
Xuecheng Zou

Nano-node tri-gate FinFET devices have been developed after integrating a 14 Å nitrided gate oxide upon the silicon-on-insulator (SOI) wafers established on an advanced CMOS logic platform. These vertical double gate (FinFET) devices with ultra-thin silicon fin (Si-fin) widths ranging from 27 nm to 17 nm and gate length down to 30 nm have been successfully developed with a 193 nm scanner lithography tool. Combining the cobalt fully silicidation and the CESL strain technology beneficial for PMOS FinFETs was incorporated into this work. Detailed analyses of [Formula: see text]–[Formula: see text] characteristics, threshold voltage [Formula: see text], and drain-induced barrier lowering (DIBL) illustrate that the thinnest 17 nm Si-fin width FinFET exhibits the best gate controllability due to its better suppression of short channel effect (SCE). However, higher source/drain resistance [Formula: see text], channel mobility degradation due to dry etch steps, or “current crowding effect” will slightly limit its transconductance [Formula: see text] and drive current.


Sign in / Sign up

Export Citation Format

Share Document