scholarly journals Evaluating the Mechanical Properties of Commonly Used 3d Printed ABS and PLA Polymers with Multi Layered Polymers

Rapid prototyping is a technology capable of producing physical models in layer by layer directly from CAD model without any tools, dies and fixtures while involving little human intervention. Rapid prototyping can fabricate complex shapes easily as compared with traditional manufacturing. It also helps in early detection and reduction of design errors. Thermoplastics used in this study are ABS and PLA which are easily available and cost effective. This study aim to investigate the mechanical performance of the 3D printed ABS and PLA thermoplastics and comparing them with the sample produced by preparing the multilayer of those themoplastics. An attempt is made to increase the mechanical performance by preparing the samples with multilayer structures using ABS and PLA. Mechanical tests like Tensile test, Compressive test, Flexural strength, Microhardness and surface roughness have been conducted as per the ASTM standards. Microstructures of the samples are acquired with optical microscope. From the results obtained ABS exhibited more flexural strength and higher elongation before breaking. But ABS consists of chemicals when heated to a certain temperature releases organic volatile compounds which are health hazardous. In order to reduce the chemical effect of ABS, a thermoplastic called PLA is used which is produced naturally and is incorporated to decrease ABS content and achieve the properties of ABS. In the present work the flexural strength of layered sample is nearer to the ABS. So, inorder to reduce the chemical effects of ABS the layered polymer can be used

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1949
Author(s):  
Ling Ding ◽  
Wei Lu ◽  
Jiaqi Zhang ◽  
Chuncheng Yang ◽  
Guofeng Wu

Literature has reported the successful use of 3D printed polyetheretherketone (PEEK) to fabricate human body implants and oral prostheses. However, the current 3D printed PEEK (brown color) cannot mimic the vivid color of oral tissues and thus cannot meet the esthetical need for dental application. Therefore, titanium dioxide (TiO2) and ferric oxide (Fe2O3) were incorporated into PEEK to prepare a series of tooth-color and gingival-color PEEK composites in this study. Through color measurements and mechanical tests, the color value and mechanical performance of the 3D printed PEEK composites were evaluated. In addition, duotone PEEK specimens were printed by a double nozzle with an interface between tooth-color and gingival-color parts. The mechanical performance of duotone PEEK with two different interfaces (horizontal and vertical) was investigated. With the addition of TiO2 and Fe2O3, the colors of 3D printed PEEK composites become closer to that of dental shade guides. 3D printed PEEK composites generally demonstrated superior tensile and flexural properties and hence have great potential in the dental application. In addition, duotone 3D printed PEEK with a horizontal interfacial orientation presented better mechanical performance than that with a vertical one.


2021 ◽  
Author(s):  
Karolina E. Mazur ◽  
Aleksandra Borucka ◽  
Paulina Kaczor ◽  
Szymon Gądek ◽  
Stanislaw Kuciel

Abstract In the study, polylactide-based (PLA) composites modified with natural particles (wood, bamboo, and cork) and with different levels of infilling (100%, 80%, and 60%) obtained by additive methods were tested. The effect of type fiber, infill level and crystallization rate on the mechanical properties were investigated by using tensile, flexural, and impact tests. The materials were subjected to mechanical tests carried out at 23 and 80 °C. Furthermore, hydrothermal degradation was performed, and its effect on the properties was analyzed. The addition of natural fillers and different level of infilling result in a similar level of reduction in the properties. Composites made of PLA are more sensitive to high temperature than to water. The decrease in Young's modulus of PLA at 80 °C was 90%, while after 28 days of hydrodegradation ~ 9%. The addition of fibers reduced this decrease at elevated temperatures. Moreover, the impact strength has been improved by 50% for composites with cork particles and for other lignocellulosic composites remained at the same level as for resin.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000758-000763 ◽  
Author(s):  
Haotao Ke ◽  
Yang Xu ◽  
Douglas C Hopkins

Post-silicon power devices, SiC or GaN for example, have many advantages over traditional silicon devices, particularly for smaller size and higher thermal densities. Although these devices are in the early stage of development, many applications have been identified, such as hybrid vehicles and the smart grid. For power packaging, there is now a greater challenge of much higher voltage, faster switching speed and much smaller package size (higher density). All of these issues call for newer approaches in power packaging. The microelectronics area has been developing stacked 3D technology along with printed 3D circuit technologies. Of been interested are the 3D printing technologies that can implement complicated structures, such as multilevel interconnects and selective dielectric field enhancements, besides introducing rapid prototyping in the early power stage design cycle. The 3D printing technology, introduced in the late 1980's, is now becoming prevalent. Commercial printers can create high-resolution structures in ceramic, metals (e.g. titanium, copper and aluminum) and polymers. The conceptual design proposed in this paper will incorporate a hybrid approach of traditional structures over-printed with polymers, or more advanced structures over-printed with metal and ceramic. The design focuses on packaging 1 cm × 1 cm SiC Schottky diode, which has a blocking capability of 8kV with a final target at 15kV. Early use of the package, in keeping with rapid prototyping, is to provide a test vehicle for the device, and prove the application of 3D printed material to high voltage power modules. This paper will present the necessity for packaging new SiC devices, review device characteristics, introduce the use of extruded 3D printing materials for a hybrid structure, and use of jetted/extruded layer-by-layer buildup for total, direct structure creation. Characterization of some available dielectric and metal printable materials, and a test methodology for electrical, thermal and mechanical performance will be discussed. An early-stage example will be shown and extrapolated to higher-level conceptual designs.


2021 ◽  
Vol 144 (4) ◽  
Author(s):  
Dylan Joralmon ◽  
Evangeline Amonoo ◽  
Yizhen Zhu ◽  
Xiangjia Li

Abstract Lightweight and cost-effective polymer matrix composites (PMCs) with extraordinary mechanical performance will be a key to the next generation of diverse industrial applications, such as aerospace, electric automobile, and biomedical devices. Limpet teeth made of mineral-polymer composites have been proved as nature’s strongest material due to the unique hierarchical architectures of mineral fiber alignment. Here, we present an approach to build limpet teeth inspired structural materials with precise control of geometric morphologies of microstructures by magnetic field-assisted 3D printing (MF-3DP). α-Iron (III) oxide-hydroxide nanoparticles (α-FeOOHs) are aligned by the magnetic field during 3D printing and aligned α-FeOOHs (aFeOOHs) bundles are further grown to aligned goethite-based bundles (aGBs) by rapid thermal treatment after printing. The mechanical reinforcement of aGBs in PMCs can be modulated by adjusting the geometric morphology and alignment of α-FeOOHs encapsulated inside the 3D printed PMCs. In order to identify the mechanical enhancement mechanism, physics-based modeling, simulation, and tests were conducted, and the results further guided the design of bioinspired goethite-based PMCs. The correlation of the geometric morphology of self-assembled α-FeOOHs, curing characteristics of α-FeOOHs/polymer composite, and process parameters were identified to establish the optimal design of goethite-based PMCs. The 3D printed PMCs with aGBs show promising mechanical reinforcement compared with PMCs without aGBs. This study opens intriguing perspectives for designing high strength 3D printed PMCs on the basis of bioinspired architectures with customized configurations.


2018 ◽  
Vol 939 ◽  
pp. 155-162 ◽  
Author(s):  
Behzad Nematollahi ◽  
Ming Xia ◽  
Jay Sanjayan ◽  
Praful Vijay

Extrusion-based 3D concrete printing is analogous to fused deposition modeling method, which extrudes cementitious materials from a nozzle to build a complex concrete structure layer-by-layer without the use of expensive formwork. This study aims to investigate the influence of type of fiber on inter-layer bond strength and flexural strength of extrusion-based 3D printed geopolymer. An extrudable fly ash-based geopolymer composition previously developed by the authors was reinforced by three types of fibers, namely polyvinyl alcohol (PVA), polypropylene (PP) and polyphenylene benzobisoxazole (PBO) fibers. Control geopolymer specimens with no fiber were also 3D printed for comparison purposes. The results indicated that the incorporation of fibers reduced the inter-layer bond strength of 3D printed geopolymer. This pattern was true regardless of the type of fiber. On the other hand, the flexural strength of 3D printed fiber-reinforced geopolymer mixtures was substantially higher than that of the 3D printed geopolymer with no fiber. The rate of increase in the flexural strength depended on the type of fiber. The flexural failures of the specimens were due to the tensile failure of the bottom layer, rather than the shear failure of the interfaces.


2014 ◽  
Vol 983 ◽  
pp. 63-66
Author(s):  
Francesca Scalisi

The contribution describes the experimental analysis for the improvement of the mechanical properties of samples of earth with the addition of Laponite nanoparticles. Were made two types of samples: the first consisting of soil, sand and water; the second consisting of soil, water, sand and Laponite nanoparticles. The operations performed were: chemical analysis of soil and sand; preparation of samples; Scanning Electron Microscope (SEM) observation of samples for the distribution of the elements, especially the Laponite nanoparticles; testing of compression strength and flexural strength of two types of samples; comparisons of the resulted of the mechanical tests. The improvement of the mechanical characteristics of the earth material using nanotechnology, will increase the use of eco-friendly, non-toxic, cost effective, available materials in architecture.


Author(s):  
Venkatesh Naidu Nerella ◽  
Simone Hempel ◽  
Viktor Mechtcherine

Interfaces between layers in 3D-printed elements produced by extrusion-based material deposition were investigated on both macro- and micro-scales. On the macro-scale, compression and bend tests were performed on two 3D-printable cement-based compositions (3PCs), namely C1 and C2. The influences of binder composition and time interval between layers on layer-interface strength were critically analyzed. In the context of additive manufacturing, the optimized composition C2, containing pozzolanic additives, exhibited mechanical performance superior to that of the mixture with Portland cement as the sole binder. In particular, Mixture C2 showed a less pronounced decrease in interface tensile strength. Even for time intervals between depositions of two layers as long as 1 day the loss in corresponding flexural strength was below 25%, as compared with C2 specimens tested in the perpendicular direction. In contrast, the decrease in flexural strength measured for C1 specimens amounted to over 90% for the same set of parameters. Higher porosity at the interfaces of the printed concrete layers was identified as the cause for the lower interface strengths of C1. Microscopic observations supported the findings of the macroscopic investigations. While a pronounced recovery (“self-healing”) of the porous, discontinuous interlayers was observed with increasing age for Mixture C2, in case of C1 the filling products grown in the porous interlayer were found to be non-strengthening.


Author(s):  
Gordon D. Hoople ◽  
David A. Rolfe ◽  
Katherine C. McKinstry ◽  
Joanna R. Noble ◽  
David A. Dornfeld ◽  
...  

Recent developments in microfluidics have opened up new interest in rapid prototyping with features on the microscale. Microfluidic devices are traditionally fabricated using photolithography, however this process can be time consuming and challenging. Laser ablation has emerged as the preferred solution for rapid prototyping of these devices. This paper explores the state of rapid prototyping for microfluidic devices by comparing laser ablation to micromilling and 3D printing. A microfluidic sample part was fabricated using these three methods. Accuracy of the features and surface roughness were measured using a surface profilometer, scanning electron microscope, and optical microscope. Micromilling was found to produce the most accurate features and best surface finish down to ∼100 μm, however it did not achieve the small feature sizes produced by laser ablation. 3D printed parts, though easily manufactured, were inadequate for most microfluidics applications. While laser ablation created somewhat rough and erratic channels, the process was within typical dimensions for microfluidic channels and should remain the default for microfluidic rapid prototyping.


Author(s):  
Dylan Joralmon ◽  
Evangeline Amonoo ◽  
Yizhen Zhu ◽  
Xiangjia Li

Abstract Lightweight and cost-effective polymer matrix composites (PMCs) with extraordinary mechanical performance will be a key to the next generation of diverse industrial applications such as aerospace, electric automobile, and biomedical devices. Limpet teeth made of mineral-polymer composites have been proved as nature’s strongest material due to the unique hierarchical architectures of mineral fiber alignment. Here, we present an approach to build limpet teeth inspired structural materials with precise control of geometric morphologies of microstructures by magnetic field-assisted 3D printing (MF-3DP). α-Iron (III) oxide-hydroxide nanoparticles (α-FeOOHs) are aligned by the magnetic field during 3D printing and aligned α-FeOOHs bundles are further grown to aligned goethite-based bundles (aGBs) by rapid thermal treatment after printing. The mechanical reinforcement of goethite-based fillers in PMCs can be modulated by adjusting the geometric morphology and alignment of mineral particles encapsulated inside the 3D printed PMCs. In order to identify the mechanical enhancement mechanism, physics-based modeling, simulation, and tests were conducted and the results further guided the design of bioinspired goethite-based PMCs. The correlation of the geometric morphology of self-assembled α-FeOOHs, curing characteristics of α-FeOOHs/polymer composite, and process parameters were identified to establish the optimal design of goethite-based PMCs. The 3D-printed PMCs with aGBs show promising mechanical reinforcement. This study opens intriguing perspectives for designing high strength 3D printed PMCs on the basis of bioinspired architectures with customized configurations.


2014 ◽  
Vol 474 ◽  
pp. 381-386 ◽  
Author(s):  
Petr Zelený ◽  
Jiří Šafka ◽  
Irina Elkina

This article is focused on a production of mechanically resistant physical models using Rapid Prototyping technology. There are two tested materials, ABS is the first build material and ABS-like is the second build material with similar properties. The article describes the production of a testing component - element for tensile tests by two RP technologies. The first technology is FDM (Fused Deposition Modeling) and the second PolyJet Matrix. Further the article describes the description and evaluation of the tensile tests.


Sign in / Sign up

Export Citation Format

Share Document