scholarly journals Behaviour of Fiber Reinforced Geopolymer Concrete

This paper presents the behavior of geopolymer concrete with small and big fibers. The aluminosilicate materials used for geopolymer concrete are fly ash and GGBS. For this study standard cube, cylinder and beam specimens are casted and tested to investigate compressive, split tensile and flexural strengths. The experimental results shows that incorporation of steel fibers for the geopolymer mixes improve the strength properties. Few models are generated to estimate the strengths with alliance of cube compressive strength.

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6890
Author(s):  
Muhammad Ibraheem ◽  
Faheem Butt ◽  
Rana Muhammad Waqas ◽  
Khadim Hussain ◽  
Rana Faisal Tufail ◽  
...  

The purpose of this research is to study the effects of quarry rock dust (QRD) and steel fibers (SF) inclusion on the fresh, mechanical, and microstructural properties of fly ash (FA) and ground granulated blast furnace slag (SG)-based geopolymer concrete (GPC) exposed to elevated temperatures. Such types of ternary mixes were prepared by blending waste materials from different industries, including QRD, SG, and FA, with alkaline activator solutions. The multiphysical models show that the inclusion of steel fibers and binders can enhance the mechanical properties of GPC. In this study, a total of 18 different mix proportions were designed with different proportions of QRD (0%, 5%, 10%, 15%, and 20%) and steel fibers (0.75% and 1.5%). The slag was replaced by different proportions of QRD in fly ash, and SG-based GPC mixes to study the effect of QRD incorporation. The mechanical properties of specimens, i.e., compressive strength, splitting tensile strength, and flexural strength, were determined by testing cubes, cylinders, and prisms, respectively, at different ages (7, 28, and 56 days). The specimens were also heated up to 800 °C to evaluate the resistance of specimens to elevated temperature in terms of residual compressive strength and weight loss. The test results showed that the mechanical strength of GPC mixes (without steel fibers) increased by 6–11%, with an increase in QRD content up to 15% at the age of 28 days. In contrast, more than 15% of QRD contents resulted in decreasing the mechanical strength properties. Incorporating steel fibers in a fraction of 0.75% by volume increased the compressive, tensile, and flexural strength of GPC mixes by 15%, 23%, and 34%, respectively. However, further addition of steel fibers at 1.5% by volume lowered the mechanical strength properties. The optimal mixture of QRD incorporated FA-SG-based GPC (QFS-GPC) was observed with 15% QRD and 0.75% steel fibers contents considering the performance in workability and mechanical properties. The results also showed that under elevated temperatures up to 800 °C, the weight loss of QFS-GPC specimens persistently increased with a consistent decrease in the residual compressive strength for increasing QRD content and temperature. Furthermore, the microstructure characterization of QRD blended GPC mixes were also carried out by performing scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS).


2021 ◽  
Vol 11 (15) ◽  
pp. 6740
Author(s):  
Rana Muhammad Waqas ◽  
Faheem Butt

Geopolymer concrete, also known as an earth-friendly concrete, has been under continuous study due to its environmental benefits and a sustainable alternative to conventional concrete construction. The supplies of many source materials, such as fly ash (FA) or slag (SG), to produce geopolymer concrete (GPC) may be limited; however, quarry rock dust (QRD) wastes (limestone, dolomite, or silica powders) formed by crushing rocks appear virtually endless. Although significant experimental research has been carried out on GPC, with a major focus on the mix design development, rheological, durability, and mechanical properties of the GPC mixes; still the information available on the structural behavior of GPC is rather limited. This has implications in extending GPC application from a laboratory-based technology to an at-site product. This study investigates the structural behavior of quarry-rock-dust-incorporated fiber-reinforced GPC columns under concentric and eccentric loading. In this study, a total of 20 columns with 200 mm square cross-section and 1000 mm height were tested. The FA and SG were used as source materials to produce GPC mixtures. The QRD was incorporated as a partial replacement (20%) of SG. The conventional concrete (CC) columns were prepared as the reference specimens. The effect of incorporating quarry rock dust as a replacement of SG, steel fibers, and loading conditions (concentric and eccentric loading) on the structural behavior of GPC columns were studied. The test results revealed that quarry rock dust is an adequate material that can be used as a source material in GPC to manufacture structural concrete members with satisfactory performance. The general performance of the GPC columns incorporating QRD (20%) is observed to be similar to that of GPC columns (without QRD) and CC columns. The addition of steel fibers considerably improves the loading capacity, ductility, and axial load–displacement behavior of the tested columns. The load capacities of fiber-reinforced GPC columns were about 5–7% greater in comparison to the CC columns. The spalling of concrete cover at failure was detected in all plain GPC columns, whereas the failure mode of all fiber-reinforced GPC columns is characterized with surface cracking leading to disintegration of concrete cover.


2013 ◽  
Vol 594-595 ◽  
pp. 629-633 ◽  
Author(s):  
Behzad Nematollahi ◽  
Jay Sanjayan ◽  
Jessie Xia Hui Chai ◽  
Tsui Ming Lu

This paper evaluates the effects of glass fiber addition on the properties of fresh and hardened fly ash based geopolymer concrete (GPC) activated by 8 M NaOH solution (28.6%) + Na2SiO3 (71.4%) with a SiO2/Na2O ratio of 2.0. Glass fibers at the dosages of 0.50%, 0.75%, 1.00% and 1.25% by volume of concrete were added to the GPC mix. The properties of fresh and hardened glass fiber reinforced fly ash based GPC in terms of workability, density, compressive and flexural strengths were compared with those of the fly ash based GPC without using glass fiber. The experimental results indicated that inclusion of the glass fibers resulted in decrease of the workability but increase of the density, compressive and flexural strengths of the fly ash based GPC with increased fiber content.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 262
Author(s):  
Shelorkar A.P ◽  
Jadhao P.D

This paper reports on a wide-ranging study on the properties of slurry infiltrated fiber concrete containing fly ash, Metakaolin, and hook ended steel fibers. Properties studied include workability of fresh slurry infiltrated fiber concrete, and compressive strength, flexural tensile strength, splitting tensile strength, dynamic elasticity modulus, impact energy of hardened slurry infiltrated fiber concrete. Fly ash and Metakaolin content used was 0%, 2.5%, 5.0%, 7.5% and 10% in mass basis, and hook ended steel fibers volume fraction was 0%, 2.0%, 3.0% and 4.0% in volume basis. The laboratory results showed that steel fiber addition, either into control concrete or fly ash, Metakaolin blend slurry infiltrated fiber concrete; improve the tensile strength properties, flexural strength, impact energy and modulus of elasticity. In this experimental study, compressive strength improvement ratio is 33.60%, and Structural efficiency is 9.50 % higher in slurry infiltrated fiber-concrete with Metakaolin as compared with fly ash based slurry infiltrated fiber concrete at the 4% replacement ratio of hook ended steel fibers by volume.  


2021 ◽  
Vol 309 ◽  
pp. 01102
Author(s):  
Nutakki Sai Ketana ◽  
V Srinivasa Reddy ◽  
M V Seshagiri Rao ◽  
S Shrihari

In the present study, effect of various molarities of NaOH, various fly ash content and alkaline activator solution (AAS) / fly ash(FA) ratios on the workability of geopolymer concrete(GPC) are studied along with the effect of use of Na2SiO3/NaOH and K2SiO3/KOH as alkaline activator solutions and various fly ash contents on the compressive strength of geopolymer concrete mixes. Observations shows that both Na2SiO3/NaOH and K2SiO3/KOH gives better performance for different molar, AAS/FA and oxide ratios. Class C GPC has better performance than Class F GPC. It was found that the increase in molarity decreases workability of geopolymer concrete. Also, the workability increases with increase in fly ash (FA) content and AAS/FA ratio in geopolymer concrete. Compressive and split tensile strengths decrease with increase in fly ash content.


This experimental work deals with the effects of alccofine in concrete by optimum replacement of cement and variation of steel fibers to determine the workability and compressive strength. In this work 42 cube samples of size 150*150*150mm were cast by 10% of alccofine as constant with different percentages of steel fibers 1,2,3,4 and 5 respectively. From the results, it was found that strength was increased with optimum replacement of alccofine with increasing the % of steel fibers after 7&28 days curing. For the experimental values best fit model was developed. Using ANSYS, all the concrete cubes were studied and determined the values of deformation, principle stresses and shear stresses.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Özlem Çelik Sola ◽  
Murat Yayla ◽  
Barış Sayın ◽  
Cengiz Duran Atiş

The aim of this study is to evaluate the effect of the different types of fly ash on the compressive strength properties of sintered briquettes. Thermal gravimetric (TG) analysis was carried out. The chemical composition and physical properties of the materials used were determined. Particle size distribution and microstructure elemental analyses of the materials used were carried out by a particle size analyzer (Mastersizer) and a scanning electron microscope (SEM-EDS). Following the characterization of the materials, briquettes were prepared by sintering at different temperatures. Compressive strength test results of the briquette samples indicated that briquettes with a compressive strength value of 47.45 N/mm2can be produced. The results obtained exceed the Turkish standard (TS EN 771-1) requirements (9.8–23.54 N/mm2). SEM-EDS results showed that briquette samples made with Tunçbilek (T) fly ash had a higher percentage of the glassy phase than the other briquette samples. Due to this microstructure, it results in higher compressive strength value.


2013 ◽  
Vol 741 ◽  
pp. 49-54 ◽  
Author(s):  
Gum Sung Ryu ◽  
Gi Hong Ahn ◽  
Kyung Taek Koh ◽  
Jang Hwa Lee

This study intends to investigate experimentally the mechanical characteristics of the compressive strength and elastic modulus of concrete using 3 types of binder that are ordinary Portland cement, fly ash and physically milled fly ash. The test results show that the compressive strength and elastic modulus of the cement-zero concrete reached respectively 30.0 MPa and 19.1 GPa, and indicated that more than 90% of the strength was developed at early age. In addition, a comparison of the geopolymer concrete with ordinary concrete enabled to derive and suggest formulaeexpressing the elastic modulus in function of the compressive strength.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Sign in / Sign up

Export Citation Format

Share Document