scholarly journals Online Oil Condition Monitoring of Four-Stroke Engine

In recent days, Automobiles that make easy transportation of goods play an important role in the economic growth of any country. Transportation necessitates the continuous running of a vehicle without any unwanted break downs. The engine is considered as the heart of an automobile. Vehicle break on may happen due to unexpected or premature failures of some critical parts of an engine. Critical parts of engines are mainly cylinder, piston, crankshaft, timing belt, and clutch. The failure of the above components mainly depends on the lubricating performance of engine oil. Now a day’s oil is being usually replaced based on periodic maintenance schedule designed by vehicle manufacturers. This schedule is framed based on kilometer coverages of vehicles or time period. In this practice, there is the possibility of being oil replaced before completing its life. Even during service work, technicians in the workshop do not follow any method to know the actual condition of oil before replacing it. There is a need for actual driving habits, traffic conditions, engine speed, and load conditions, road conditions (gradients) to predict the condition up to which oil was being utilized. Thus the above is helpful in the prediction of the remaining life of engine oil. This can be done only by monitoring the properties of engine oil continuously during vehicle running. The properties of any lubricating oil are the viscosity, Viscosity index, density, Specific weight, Specific volume, specific gravity, surface tension, and capillarity. Since viscosity place, a vital role in lubrication oil condition can be judged by monitoring it continuously. The monitoring of viscosity helps to identify the actual condition of the oil. This is done by a system that receives signal for the temperature of oil, converts the same into viscosity units and displays it. Therefore vehicle users can identify the exact replacement of engine oil.

2011 ◽  
Vol 328-330 ◽  
pp. 203-208 ◽  
Author(s):  
Cheng Bin Chen ◽  
Da Heng Mao ◽  
Chen Shi ◽  
Yang Liu

Nano-WS2(tungsten disulfide nanoparticles)lubricating oil additive, prepared by the nanometer WS2particulates and semi-synthetic engine base oil as raw materials, was added into Great Wall engine oil with different mass ratio. With a contrast study on these oil samples, the results show that it can improve the extreme pressure, antiwear and viscosity-temperature properties of the engine oil effectively by adding a certain amount of nano-WS2additive, and the optimal concentration is 2wt%. The oil film strength, sintering load and viscosity index of this lubricating oil is respectively 1.35 times, 1.58 times and 1.05 times as that of Great Wall engine oil. In addition, when tested under the grinding conditions of 392 N, 1450 r /min and 30 min, the diameter of worn spot reduces 0.018mm, and the average friction coefficients of friction pairs decrease 16.3%, both of which are lubricated by the oil containing nano-WS2additive. Meanwhile, the experiments testify that the tribological and viscosity-temperature properties of the nano-WS2additive are better than that of the Henkel MoS2additive.


Author(s):  
Vasiliy Aleksandrovich Chanchikov ◽  
Ivan Nikolaevich Guzhvenko ◽  
Alexandr Ivanovich Andreev ◽  
Marina Aleksandrovna Shulimova ◽  
Sergey Aleksandrovich Svekolnykov

The paper presents the results of studying the influence of variable characteristics of lubricating oils for marine diesel engines (concentration of layered friction modifier in lubricating oil, viscosity of lubricating oil, contact pressure in the friction zone) on the tribological parameters of parts of the cylinder-piston group of marine diesel engines. There are considered the aspects of increasing the reliability and wear resistance of the cylinder-piston group of marine diesel engines when a layered friction modifier is added to the base lubricating oil in a concentration of 1.5 vol.%. There have been carried out the comparative tribological studies of M-16G2CS lubricating oil including an additive based on molybdenum diselenide. Dependences of the wear of parts of the cylinder-piston group of a marine engine on different parameters of the studied lubricants are shown. The wear rate of experimental samples in conditions of variable characteristics of lubricants has been studied. According to the tribological studies of lubricants and structural materials, the tribological rating of lubricating compositions containing M16G2CS marine engine oil as a base and a layered friction modifier - molybdenum diselenide as a tribologically active additive was built. The test tool for the antiwear ability of lubricants is a friction machine of an original design with abraded samples according to the “ball-cylinder” contact scheme. Mechanical mixing of the lubricating medium of “oil + additive” type on the RPU-0.8-55A rotary-pulsating unit was one of the variable parameters in the tests. The tribological efficiency of the studied antiwear additive varies depending on the type of mixing of the additive solution before adding to the base lubricating oil and makes 13-54% (the difference in the diameter of the wear spot of the sample) for mechanical mixing, and for rotary-pulsation mixing - 45-56%.


2019 ◽  
Vol 7 (1) ◽  
pp. 14-17 ◽  
Author(s):  
Shenwar A. Idrees ◽  
Lawand L. Mustafa ◽  
Sabah S. Saleem

the effect of polarity of solvent on the viscosity and viscosity index of lubricating engine oil has been studied using ethanol as an example of polar solvent and toluene as an example of non-polar solvent at different solvent ratios and ambient temperature and additionally other experiments have been done at five different temperatures including 100 oC. So that, the activation energy of viscous flow (Ea) was calculated, and for this purpose Arrhenius viscosity-temperature dependence has been applied and the results were 42.128, 29.256 and 35.417KJ/mole for lubricating engine oil mixed with ethanol, toluene and no additives in turn. It additionally shows that adding polar solvent to lubrication engine oil viscosity increases this may be due to the fact of strong inter molecular forces that found in polar molecules such as hydrogen bonding in ethanol makes the solution forces stronger as a result higher viscosity. However, adding non-polar solvent decreases viscosity because of small size of toluene and both paraffinic lubricating oil and toluene have same London dispersion inter molecular forces. Last not least, the result shows that engine oil mixed with non-polar molecule gives more temperature stability than that of polar molecule giving viscosity index (VI) 366 and 580 respectively.


2019 ◽  
Vol 823 ◽  
pp. 53-60
Author(s):  
Hakan Kaleli̇ ◽  
Selman Demi̇rtaş ◽  
Veli Uysal ◽  
Zulhicce Tanriseven ◽  
Jun Zhao

Lubricants play a vital role in machine life and performance, reducing friction and wear and preventing component failure. Performance-enhancing additives are a vital part of today’s modern lubricants. In response to this need, this experimental work presents the development of the new suspended nanoboric acid (nBA) additive added in engine oil that can drastically lowered friction and wear.This is a new invention of nBA additive hold in suspension and added into 5W-40 fully synthetic commercial lubricating oil. This invention is confidential and realized by Tribor ARGE Co. in Teknopark of YILDIZ Technical University in Istanbul-TURKEY.The particle size of nBA is determined with (Transmission Electron Microscopy) (TEM). Turbiscan Tower Stability Analyzer results proved that nBA particles were in suspension in commercial engine oil. Suspended nBA in engine oil is applied between ball and disk system in order to investigate their effect on friction and wear under lubricated conditions. Simulation and measurement of friction and wear were conducted using a ball on disk reciprocating tribometer UMT-3. Surface analysis was performed using 3D digital optical microscope and surface roughness, Field Emission Scanning Electron Microscope (FESEM)/X-Ray and Atomic Force Microscopy (AFM). Boron (B) from nBA is well detected, mixed with other elements of additives and protected the surface under boundary lubrication conditions. The results indicate that nBA can considerably improve the tribological performance of a ball and disk pairs under lubricated conditions. It has found that the friction coefficient is reduced with nBA suspended engine oil and protected the surface on both ball and disk mixing with other additives.


2019 ◽  
Vol 302 ◽  
pp. 01010
Author(s):  
Bogdan Landowski ◽  
Monika Baran

The study presents selected results of viscosity tests performed for different temperatures of lubricating oil with viscosity marked as 5w30. Viscosity tests of new oil and oil right after being used have been compared. Lubricating oil used in a drive unit of a passenger car was tested. A vehicle in which oil had been changed irregularly was purposefully selected for the tests. Its mileage was over 15-20 thousand kilometers. Upon testing the vehicle mileage was above 265 thousand kilometers. The values of selected characteristics of the analyzed engine oils have been determined including: density, kinematic viscosity and viscosity index. FUNGILAB rotary viscometer was used for measurement of the oil kinematic viscosity.


2015 ◽  
Vol 67 (5) ◽  
pp. 425-433 ◽  
Author(s):  
Nehal S. Ahmed ◽  
Amal M. Nassar ◽  
Rabab M. Nasser

Purpose – The purpose of this paper is to prepare novel types of copolymers and terpolymers depending on jojoba, and using them as additives for lubricating oil. Design/methodology/approach – Copolymerization of 1 mole of jojoba with 2 moles of vinyl acetate and copolymerization of 1 mole of jojoba with 2 moles of vinyl pyrrolidone were carried out. Then, two series of terpolymers were prepared by reacting (jojoba: vinyl acetate: alkylacrylate) and (jojoba: vinyl pyrrolidone: alkylacrylate), using free radical chain addition polymerization. Elucidation of the prepared polymers was carried out by using Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and gel permeation chromatography, for determination of weight average molecular weight. The thermal stability of the prepared polymers was determined. The prepared polymers were evaluated as viscosity index improvers and pour point depressants for lubricating oil. Findings – It was found that the viscosity index increases with increasing the alkyl chain length of alkylacrylate. The effect of the monomer type was studied, and it was found that the polymers depending on vinyl acetate have great effect as viscosity index improvers and pour point depressants for lubricating oil. Originality/value – The polymerization of jojoba as different copolymers and terpolymers was carried out. The great influence of the prepared additives on modification of the viscosity properties and pour point of the oil was observed.


Jurnal METTEK ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Dedison Gasni ◽  
KM Abdul Razak ◽  
Ahmad Ridwan ◽  
Muhammad Arif

Penelitian ini bertujuan untuk mengetahui efek dari penambahan minyak kelapa dan sawit terhadap sifat fisik dan tribologi pelumas SAE 40. Vegetabel oil, seperti; minyak kelapa dan sawit, memiliki nilai viskositas indek yang tinggi dan sifat pelumasan yang baik terutama didaerah boundary lubrication jika dibandingkan dengan mineral oil (SAE 40). Hal ini disebabkan karena vegetabel oil memiliki kandungan fatty acids yang tidak dimiliki oleh mineral oil. Keunggulan lain dari minyak kelapa dan sawit adanya sifat yang ramah lingkungan karena mudah terurai di alam dan dapat diperbaharui. Pada penelitian ini sifat yang baik dari minyak kelapa dan sawit ini akan dimanfaatkan sebagai zat aditif pada minyak pelumas SAE 40. Pengujian dilakukan terhadap sifat fisik dan tribology dengan penambahan 5%, 10%, 15%, dan 20% berat dari minyak kelapa dan sawit ke dalam minyak pelumas SAE 40. Pengujian sifat fisik terdiri dari pengukuran viskositas pada temperatur 400C dan 1000C dan viskositas index. Pengujian sifat tribologi untuk menentukan keausan dan koefisien gesek berdasarkan ASTM G99 dengan menggunakan alat uji pin on disk. Dari hasil pengujian diperoleh bahwa dengan penambahan minyak kelapa dan sawit kedalam minyak pelumas SAE 40 terjadi peningkatan viskositas indeks. Peningkatan viskositas indeks sebanyak  17% dengan penambahan 20% minyak sawit. Terjadi perubahan sifat tribologi dengan penambahan minyak sawit, berupa penurunan keausan dan nilai koefisien gesek dibandingkan dengan penambahan minyak kelapa. This study aims to determine the effect of coconut and palm oils as additives to physical and tribological properties of SAE 40 lubricating oil . Vegetable oils, such as; coconut oil and palm oil, have high viscosity index and good lubrication properties, especially in boundary lubrication compared to mineral oil. This is due to vegetable oil having fatty acids that are not owned by mineral oil. The advantages of coconut oil and palm oil are environmentally friendly properties because they are biodegradable and renewable. In this study, the good properties of coconut and palm oils will be used as additives in SAE 40 lubricating oil. Tests are carried out on the physical and tribological properties with the addition of 5%, 10%, 15%, and 20% by weight of coconut and palm oils into SAE 40 lubricating oil. Physical properties testing consists of measuring viscosity at temperatures of 400C and 1000C and viscosity index. The tribological test is to determine wear and coefficient of friction based on ASTM G99 using a pin on disc test equipment. From the test results,  it was found that coconut and palm oils as additives into SAE 40 lubricating oil could increase in viscosity index. The increase of  the viscosity index was 17% by adding 20% of palm oil. There was a change of tribological properties in the form of decreasing on the wear and the coefficient of friction with the addition of palm oil compare to addition of coconut oil.


1970 ◽  
Vol 43 (4) ◽  
pp. 529-536
Author(s):  
M Naimul Haque ◽  
M Yunus Miah ◽  
S Ali Ashruf ◽  
M Rafiqul Islam ◽  
A Kumar Das

Waste lubricating oil has been reclaimed by treatment with commercial sulphuric acid followed by adsorption on fuller's earth. A maximum yield (75%) of reclaimed oil at acid- oil ratio of 10:100 with addition of 10% (w/v) fuller's earth has been obtained. Properties of reclaimed oil such as viscosity index, pour point, colour etc. have been improved from 93.4, +2, 5.0 to 109, -10.5, 4.0 by addition of certain proportion of additives. TGA analysis of waste lubricating oil, reclaimed oil and fresh lubricating oil has also been studied. The reclaimed oil obtained after addition of different types of additives is very comparable to SAE 30 grade lubricating oil in terms of properties and is applicable as a standard lubricant. Such a reuse of waste lubricating oil, in addition to its economic effect will help to reduce environmental problem. Key words: Lubricating oil, TGA analysis, Envirormentl problem and Vscosity index.      doi: 10.3329/bjsir.v43i4.2243 Bangladesh J. Sci. Ind. Res. 43(4), 529-536, 2008


2018 ◽  
Author(s):  
Haibo Bi ◽  
Yunhe Wang ◽  
Xiuli Xu ◽  
Yu Liang ◽  
Jue Huang ◽  
...  

Abstract. Sea ice export through Baffin Bay plays a vital role in modulating the meridional overturning process in the downstream Labrador Sea. In this study, satellite-derived sea ice products are explored to obtain the sea ice flux (SIF) through three passages (referred to as A, B, and C for the north, middle, and south passages, respectively) of Baffin Bay. Over the period 1988–2015, the average annual (October–September) sea ice area export is 555 × 103 km2, 642 × 103 km2, and 551 × 103 km2 through passages A, B, and C, respectively. These amounts are less than that observed through the Fram Strait (FS, 707 × 103 km2). Clear increasing trends in annual sea ice export on the order of 53.1 × 103 km2/de and 43.2 × 103 km2/de are identified at passages A and B, respectively. The trend at the south passage (C), however, is slightly negative (−13.3 × 103 km2/de). The positive trends in annual SIF at A and B are primarily attributable to the increase during winter months, which is triggered by the accelerated sea ice motion (SIM) and partly compensated by the reduced sea ice concentration (SIC). During the summer months, the sea ice export through each Baffin Bay passage usually presents a negative trend, primarily because of the decline in SIM and it is further enhanced by a dramatic decrease in SIC. A significant positive trend in the net SIF (i.e. net ice inflow) is found for between the passages A (or B) and C at 54.5 (or 64.2) × 103 km2/de. Therefore, Baffin Bay may have presented a greater convergence of ice. Overall, the connection between Baffin Bay sea ice export and the North Atlantic Oscillation (NAO) is tenuous, although the correlation is sensitive to variations in the selected time period. In contrast, the association with the cross-gate sea level pressure difference (SLPD) is robust in Baffin Bay (R = 0.69–0.71 depending on the passages), but relatively weaker compared with that in the FS (R = 0.74). Baffin Bay is bounded by Baffin Island to the west and Greenland to the east, thus, sea ice drift is not converted to the free state observed in the FS.


Economies ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 78
Author(s):  
Daryn Joy Go ◽  
Michael Angelo Promentilla ◽  
Kathleen Aviso ◽  
Krista Danielle Yu

Economic sectors play a vital role in ensuring that government’s goals are achieved. This study analyzes the evolution of the structure and key sectors of an economy through the use of a sector prioritization index. This methodology integrates input-output analysis and analytic hierarchy process to determine the structural changes experienced by the economy, while accounting for the changes in the government’s priorities and concerns over time. Using the case of the Philippines from 1969 to 2012, this study shows a time-series analysis of the transformation that the economy underwent alongside with the government’s prioritization mechanism. We found that the manufacturing sector had consistently received high-priority rankings, while the agriculture sector had recently moved from a high- to mid-priority ranking, indicating the country’s shift towards a more industry-driven economy. These findings were supported by the private services and trade sectors’ high-priority rankings towards the latter half of the time period. Overall, our methodology was able to identify key sectors that reflect the country’s economic and political situation across different eras.


Sign in / Sign up

Export Citation Format

Share Document