scholarly journals Physicochemical Properties of Enzymatically Synthesised Medium-Chain Triacylglycerols-based Enhancer Cream

Structured lipids (SLs) containing medium-chain triacylglycerols (MCTs) were produced by lipase catalysed acidolysis of both octanoic acid and the virgin coconut oil (VCO). The production of SLs, namely structured virgin coconut oil (SVCO), was previously optimised using the central composite design (CCD) based on the percentage of octanoic acid incorporated in the reaction products. The fatty acids and triacylglycerols composition and their corresponding rheological properties of the formulated SVCO incorporated α-tocopherol cream were also determined. The parameters that were suggested for the highest incorporation of octanoic acid (68.07%) are octanoic acid to VCO ratio of 1.70 (w/w); an enzyme load of 22.60%; at 63.4°C; a water content of 3.53%; and at 96 h. The amount of octanoic acid (carbon-8), the medium-chain fatty acids present in the structured lipid after enzymatic esterification was increased to 60.1% as compared to the natural VCO with only contains 5.45%. Based on the calculated equivalent carbon number (ECN), the most probable MCTs found in the SVCO were CpCpCp, CpCCp, and CpLaCp. Based on the rheological analysis, the SVCO creams were less viscoelastic as compared to the VCO. It shows that the decrease of the saturated fatty acids composition (carbon-12, 14, and 16) in the SVCO creams had significantly decreased the elasticity of the cream

2021 ◽  
Vol 10 (1) ◽  
pp. 104
Author(s):  
Dewa Ayu Ika Pramitha ◽  
I Wayan Karta

Fatty acid content from virgin coconut oil (VCO) is a medium-chain triglyceride (MCT) group. MCT is stable at very low and high temperatures, and the color does not turn black due to the addition of heat so that it can be developed into beneficial cooking oil for health. Therefore, a study was conducted on the content of fatty acids in VCO after being heated at temperatures of 150, 200, and 250°C for 60 minutes. Analysis of fatty acid content in control VCO(T0), VCO with heating temperatures of 150oC(T1), 200oC(T2), and 250oC(T3) was performed with GCMS QP-2010 Ultra.The results showed that there were differences in levels and types of fatty acids in VCO by treating T0, T1, T2, and T3. At these three temperatures still produce medium-chain saturated fatty acids and trans fatty acids are not produced, so that VCO can be utilized as cooking oil that has better stability and benefits for health.


2021 ◽  
Vol 17 (1) ◽  
pp. 62-67
Author(s):  
Putri Desi Eka ◽  
Djamil Ratna ◽  
Faizatun Faizatun

Relevance. Virgin Coconut Oil (VCO) contains a lot of medium chain fatty acids, combined with coffee grounds (Coffea Arabica Linn.) and activated carbon (Activated carbon coconut Nucifera L) into a preparation that can moisturize and brighten the skin. Objective. The purpose of this study was to make cosmetic cleansing preparations containing three natural ingredients. Methods. This study evaluates the organoleptic body scrub preparations, homogeneity, dispensability, and pH. The ingredients were tested using in-vivo and clinical irritation along with the effectiveness of the preparation (moisture and brightness). Results. Organoleptic testing and homogeneity were confirmed to have dark black color, the distinctive smell of coffee, homogeneity, spreadability in the range of 4 cm, and the pH was at a safe pH for the skin so that irritation results also did not show edema and erythema both in-vivo divided into 3 groups (n = 3) and clinically (n = 30). In addition, this body scrub provides moisture and brightness to the skin for 2 months of use, p <0.05. Conclusions. VCO body scrub preparations, coffee grounds, and activated carbon are preparations that have the potential to be cosmetic cleansers.


2015 ◽  
Vol 9 (7) ◽  
pp. 93 ◽  
Author(s):  
A Suryanto ◽  
Suprapto Suprapto ◽  
Mahfud Mahfud

Biofuels including biodiesel, an alternative fuel, is renewable, environmentally friendly, non-toxic and lowemission energy. The raw material used in this work was coconut oil, which contained saturated fatty acids about90% with medium chain (C8-C12), especially lauric acid and myristic acid. Reaction was conducted in batchreactor assisted by microwave. The purpose of this research was to study the effect of power and NaOH catalystin transesterification enhanced by microwave and to obtain a biofuels (biodiesel and biokerosene) derived fromcoconut oil. The reaction was performed by mixing oil and methanol with mole ratio of 1:6, catalystconcentration of 1% w/w with setting electrical power at 100, 264, 400, 600 and 800 W. The reaction time wasconditioned at of 2.5, 5, 7.5, 10 and 15 min. The results showed that microwave could accelerate thetransesterification process to produce biodiesel using NaOH catalyst. The highest yield of biodiesel was 97.76 %,or 99.05 % conversion at 5 min reaction, meanwhile biokerosene was 48% after distillation.


Metabolism ◽  
1994 ◽  
Vol 43 (10) ◽  
pp. 1287-1292 ◽  
Author(s):  
V.P. Carnielli ◽  
E.J. Sulkers ◽  
C. Moretti ◽  
J.L.D. Wattimena ◽  
J.B. van Goudoever ◽  
...  

1998 ◽  
Vol 66 (2) ◽  
pp. 483-489 ◽  
Author(s):  
F. Gondret ◽  
J. Mourot ◽  
F. Lebas ◽  
M. Bonneau

AbstractThe effects of fat source on lipogenesis and lipid traits of longissimus muscle, liver and perirenal adipose tissue, were studied in 48 New Zealand White rabbits, slaughtered at 11 or 15 weeks of age. Rabbits were offered diets with 20 g added fat per kg, containing either medium-chain (COC: coconut oil), saturated and monounsaturated (PAL: palm oil) or polyunsaturated (SUN: sunflower oil) fatty acids as major components. Diets did not affect growth performance, dressing proportion and tissue weights. Intramuscular lipid content was lower for COC than for SUN and PAL (e.g. 10 v. 13 and 12 glkg, at 11 weeks, respectively, P < 0·05), whereas lipid content was unaffected by diet in liver and perirenal fat. In muscle, the fat source did not influence the activities of acetyl-CoA-carboxylase (CBX), malic enzyme (ME) and glucose-6-phosphodehydrogenase (G6PDH). In liver, activities ofGSPDH and ME were depressed from the SUN diet, as compared with the COC or PAL diets. The diet-induced variations in enzyme activities in perirenal fat were lower than in the liver and were not significant. Medium-chain fatty acids were found only in tissue lipids of animals given COC. The ratio of polyunsaturated to saturated fatty acids decreased in the order SUN > PAL > COC in muscle and perirenal fat. Thus, polyunsaturated fatty acids exert an inhibition of G6PDH and ME activities specifically in liver. Compared with COC, the addition of SUN to the basal diet increased total lipids and polyunsaturated fatty acids contents in the longissimus lumborum muscle, which might improve the organoleptic and dietetic qualities of rabbit meat.


2021 ◽  
Vol 5 (2) ◽  
pp. 233-243
Author(s):  
Ismul Sadly Putra ◽  
Joserizal Serudji

Breastmilk (ASI) is the best food produced by the breast glands, containing all the nutritional elements needed by infants aged 0-6 months. Apart from nutrients, breast milk also has other non-nutritional components that act as immune factors for babies. Babies who are not exclusively breastfed will be more susceptible to chronic diseases, such as heart disease, hypertension, and diabetes as adults and can suffer from malnutrition and obesity. Dietary intake significantly affects milk production. The mother's diet can affect the composition of her milk through several metabolic pathways, especially the concentration of fatty acids and vitamins that are soluble in fat and water, including vitamins A, C, B6, and B12. Lauric acid contained in breast milk can help your minor fight infection and increase immunity to protect from various diseases. Not only for the baby, but virgin coconut oil is also starting to be commonly used by dieters. Virgin coconut oil contains lauric acid CH3 (CH2) 10COOH 50% and caprylic acid CH3 (CH2) 6COOH 7%. Both of these acids are medium-chain saturated fatty acids that are quickly metabolized and have anti-microbial properties. The benefits of virgin coconut oil (VCO) are that it is beneficial for the health of the body, including being antibacterial, antiviral, anti-fungal, and natural anti-protozoa; helps relieve symptoms and reduces health risks associated with diabetes, helps protect against osteoporosis, helps prevent high blood pressure, helps prevent liver disease, keeps the heart and blood vessels healthy, helps prevent cancer, helps you lose weight, maintain stamina, maintain healthy skin and hair.Keywords: Breastmilk, Lauric Acid, VCO


2013 ◽  
Vol 16 (12) ◽  
pp. 1079-1085 ◽  
Author(s):  
Michael Shilling ◽  
Laurie Matt ◽  
Evelyn Rubin ◽  
Mark Paul Visitacion ◽  
Nairmeen A. Haller ◽  
...  

Author(s):  
Melati Ananda Kusuma ◽  
Nia Ariani Putri

Coconut plant is often called the plant of life because every part of the coconut plant can be used and processed into a product. One of the commercially processed coconut products, namely Virgin Coconut Oil (VCO), which is believed to have health properties. This article is written based on the results of a systematic literature review which relies on literature studies on the topic of virgin coconut oil. Virgin coconut oil is produced from fresh coconut flesh (non-copra), the processing process is not through a chemical process and does not use high heating so that the characteristics of the oil produced are clear (clear) and have a distinctive aroma of coconut. The fatty acids contained in VCO are saturated and unsaturated fatty acids. The components included in saturated fatty acids are caproic acid, caprylic acid, myristic acid, palmitic acid and lauric acid; while the unsaturated fatty acid components are cyclopropanpentanoic acid, oleic acid, and stearic acid. VCO contains short and medium-chain fatty acids which are known to have certain biological functions for the human body. These benefits include its functions as anti-bacterial and anti-fungal.Tanaman kelapa sering dijuluki sebagai tanaman kehidupan karena setiap bagian dari tanaman kelapa dapat dimanfaatkan dan diolah menjadi suatu produk. Salah satu produk olahan kelapa komersial yaitu Virgin Coconut Oil (VCO) yang dipercaya memiliki khasiat untuk kesehatan. Artikel ini ditulis berdasarkan hasil tinjauan pustaka sistematis (systematic literature review) yang mengandalkan studi pustaka dengan topik mengenai minyak kelapa murni. VCO dihasilkan dari daging buah kelapa segar (non kopra) yang proses pengolahannya tidak melalui proses kimiawi dan tidak menggunakan pemanasan tinggi, sehingga karakteristik minyak yang dihasilkan berwarna bening (jernih) serta beraroma khas kelapa. Asam lemak yang terkandung dalam VCO tersebut merupakan asam lemak jenuh dan tak jenuh. Komponen yang termasuk dalam asam lemak jenuh yaitu, asam kaproat, asam kaprilat, asam miristat, asam palmitat dan asam laurat; sedangkan komponen asam lemak tak jenuh yaitu asam siklopropanpentanoat, asam oleat, dan asam stearat. VCO mengandung asam lemak rantai pendek dan menengah atau medium yang diketahui mempunyai fungsi biologis tertentu bagi tubuh manusia. Manfaat tersebut meliputi fungsi sebagai anti bakteri dan anti jamur.


2018 ◽  
Vol 48 ◽  
pp. 472-480 ◽  
Author(s):  
Mariana de Moura e Dias ◽  
Nathane Pais Siqueira ◽  
Lisiane Lopes da Conceição ◽  
Sandra Aparecida dos Reis ◽  
Flávia Xavier Valente ◽  
...  

Jurnal Kimia ◽  
2020 ◽  
pp. 192
Author(s):  
I W. Suirta ◽  
I. A. R. Astitiasih

Virgin coconut oil has been made by using papaya leaf extract as a source of the papain enzyme. Papaya leaf extraction with maceration used ethanol 95% as solvent. The crude ethanol extract was purified by means of gradient column chromatography using hexane, diethyl ether and ethanol as solvents. The results showed that using papaya leaf extract could significantly increase the quantity of VCO. Coconut milk cream without treatment (negative control) obtained 3.0042 ± 0.046g of VCO, while treatment with papaya leaf extract gained 6,039 ± 0.049 - 7,952 ± 0.031g of VCO, an increase of about 97.5% - 161%. Based on the medium chain saturated fatty acids (MCFA) and long chain saturated fatty acids (LCFA) in VCO, it indicated that the quality of VCO obtained was not good. VCO in diethyl ether fraction and crude extract etanol produced yellow VCO, indicating chlorophyll was still there. Etanol fraction of VCO provided the best quality with the most of lauric acid content and clear color. The VCO components identified using GCMS analysis obtained several fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, stearic acid, and stearic epoxy.  Keywords: virgin coconut oil, papain enzyme, papaya leaf extract Telah dilakukan pembuatan virgin coconut oil dengan ekstrak daun pepaya sebagai sumber enzim papain. Proses ekstraksi daun pepaya dengan cara maserasi menggunakan pelarut etanol 95%. Ekstrak kasar etanol hasil maserasi dimurnikan dengan cara kromatografi kolom elusi gradient menggunakan pelarut heksana, dietil eter, dan etanol. Hasil penelitian menunjukkan bahwa ekstrak daun pepaya secara signifikan dapat meningkatkan kuantitas VCO. Krim santan tanpa perlakuan (kontrol negatip) didapatkan berat VCO 3.0042±0,046g, sedangkan dengan ekstrak daun pepaya diperoleh berat VCO 6.039±0,049g – 7.952±0,031g, terjadi kenaikan sekitar 97,5% - 161%. Berdasarkan kandungan asam lemak rantai medium dan asam lemak rantai panjang pada VCO, menunjukkan bahwa kualitas VCO yang diperoleh masih kurang baik. Krim santan dengan daun pepaya fraksi dietil eter dan ekstrak kasar etanol menghasilkan  VCO berwarna kuning yang mengindikasikan masih terdapat klorofil. VCO fraksi etanol yang memberikan kualitas paling baik dengan kandungan asam laurat paling banyak dan berwarna bening. Komponen VCO yang teridentifikasi dari analisis GCMS diperoleh beberapa asam lemak seperti: asam kaprat, asam laurat, asam miristat, asam palmitat, asam oleat, asam stearat, dan epoksi stearat. Kata kunci: virgin coconut oil, enzim papain, ekstrak daun pepaya


Sign in / Sign up

Export Citation Format

Share Document