scholarly journals A Novel Protocol to Provide Authentication and Privacy in WSN

A wireless sensor network holds a large amount of nodes. These nodes will contact themselves by utilizing some of the radio signals. wireless sensor networks (WSNs) has develop some applications during a huge selection areas, in the time of which external side users ought to straightly attach with sensors to get a perceived information. But, WSNs (wireless sensor node) are open to numerous attacks for wireless links, like eavesdropping and meddling. Two-factor authentication combining password and ID utterly like this demand due to password and ID usefulness. Then, a bucket of two-factor authentication protocol was advised in present research works. Because of the difficult assignment of adjustable potency and privacy requirements, still it’s difficult to introduce a privacyaware two-factor protocol that's potential of giving different safety features whereas take care of proper potency. in this paper the proposed work tend to suggests a privacy aware two-factor authentication protocol depend on ECC for wireless sensor nodes(WSNs). In this another convention performs distinctive wellbeing highlights need fully for the application situations, all things considered, though deal with appropriate power. So in this we will in general demonstrate that the presented convention accomplishes intelligent in the Burrows–Abadi– Needham judgment to boot, through manner of unofficial security statistics, the work show the introduced protocol will face up to a range of attacks and supply fascinating safety features.

2018 ◽  
Vol 210 ◽  
pp. 03011
Author(s):  
Masahiro Okuri ◽  
Hiroaki Higaki

In wireless sensor networks, data messages containing sensor data achieved by a sensor module in a wireless sensor node is transmitted to a stationary wireless sink node along a wireless multihop transmission route in which wireless sensor nodes themselves forward the data messages. Each intermediate wireless sensor node broadcast data messages in its wireless transmission range to forward them to its next-hop intermediate wireless sensor node. Hence, eavesdropper wireless nodes within the wireless transmission range easily overhear the data messages. In order to interfere with the eavesdropper wireless nodes illegally overhearing the data messages in transmission, wireless sensor nodes whose wireless transmission ranges overlap and their next-hop intermediate wireless sensor nodes are out of the wireless transmission ranges each other forward data messages in transmission concurrently and cause collisions between these two data messages at any possible eavesdropper wireless nodes intentionally. To enhance regions where concurrently forwarded data messages intentionally collide to prevent their overhearing and to realize concurrent forwarding of data messages, this paper designes an algorithm for TDMA transmission slot assignments for more opportunities to interfere the eavesdropper wireless nodes.


2021 ◽  
Vol 11 (4) ◽  
pp. 2836-2849
Author(s):  
K. Raghava Rao ◽  
D. Sateesh Kumar ◽  
Mohiddin Shaw ◽  
V. Sitamahalakshmi

Now a days IoT technologies are emerging technology with wide range of applications. Wireless sensor networks (WSNs) are plays vital role in IoT technologies. Construction of wireless sensor node with low-power radio link and high-speed processors is an interesting contribution for wireless sensor networks and IoT applications. Most of WSNs are furnished with battery source that has limited lifetime. The maximum operations of these networks require more power utility. Nevertheless, improving network efficiency and lifetime is a curtail issue in WSNs. Designing a low powered wireless sensor networks is a major challenges in recent years, it is essential to model its efficiency and power consumption for different applications. This paper describes power consumption model based on LoRa and Zigbee protocols, allows wireless sensor nodes to monitor and measure power consumption in a cyclic sleeping scenario. Experiential results reveals that the designed LoRa wireless sensor nodes have the potential for real-world IoT application with due consideration of communicating distance, data packets, transmitting speed, and consumes low power as compared with Zigbee sensor nodes. The measured sleep intervals achieved lower power consumption in LoRa as compared with Zigbee. The uniqueness of this research work lies in the review of wireless sensor node optimization and power consumption of these two wireless sensor networks for IoT applications.


2013 ◽  
Vol 347-350 ◽  
pp. 1920-1923
Author(s):  
Yu Jia Sun ◽  
Xiao Ming Wang ◽  
Fang Xiu Jia ◽  
Ji Yan Yu

The characteristics and the design factors of wireless sensor network node are talked in this article. According to the design factors of wireless sensor network, this article will mainly point out the design of wireless sensor nodes based a Cortex-M3 Microcontroller STM32F103RE chip. And the wireless communication module is designed with a CC2430 chip. Our wireless sensor node has good performance in our test.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4625 ◽  
Author(s):  
Km Renuka ◽  
Sachin Kumar ◽  
Saru Kumari ◽  
Chien-Ming Chen

Wireless sensor networks (WSNs) are of prominent use in unmanned surveillance applications. This peculiar trait of WSNs is actually the underlying technology of various applications of the Internet of Things (IoT) such as smart homes, smart cities, smart shopping complexes, smart traffic, smart health, and much more. Over time, WSNs have evolved as a strong base for laying the foundations of IoT infrastructure. In order to address the scenario in which a user wants to access the real-time data directly from the sensor node in wireless sensor networks (WSNs), Das recently proposed an anonymity-preserving three-factor authentication protocol. Das’s protocol is suitable for resource-constrained sensor nodes because it only uses lightweight cryptographic primitives such as hash functions and symmetric encryption schemes as building blocks. Das’s protocol is claimed to be secure against different known attacks by providing formal security proof and security verification using the Automated Validation of Internet Security Protocols and Applications tool. However, we find that Das’s protocol has the following security loopholes: (1) By using a captured sensor node, an adversary can impersonate a legal user to the gateway node, impersonate other sensor nodes to deceive the user, and the adversary can also decrypt all the cipher-texts of the user; (2) the gateway node has a heavy computational cost due to user anonymity and thus the protocol is vulnerable to denial of service (DoS) attacks. We overcome the shortcomings of Das’s protocol and propose an improved protocol. We also prove the security of the proposed protocol in the random oracle model. Compared with the other related protocols, the improved protocol enjoys better functionality without much enhancement in the computation and communication costs. Consequently, it is more suitable for applications in WSNs


Author(s):  
Mohd Syafiq Mispan ◽  
Aiman Zakwan Jidin ◽  
Muhammad Raihaan Kamaruddin ◽  
Haslinah Mohd Nasir

Wireless sensor node is the foundation for building the next generation of ubiquitous networks or the so-called internet of things (IoT). Each node is equipped with sensing, computing devices, and a radio transceiver. Each node is connected to other nodes via a wireless sensor network (WSN). Examples of WSN applications include health care monitoring, and industrial monitoring. These applications process sensitive data, which if disclosed, may lead to unwanted implications. Therefore, it is crucial to provide fundamental security services such as identification and authentication in WSN. Nevertheless, providing this security on WSN imposes a significant challenge as each node in WSN has a limited area and energy consumption. Therefore, in this study, we provide a proof of concept of a lightweight authentication protocol by using physical unclonable function (PUF) technology for resource-constrained wireless sensor nodes. The authentication protocol has been implemented on NodeMCU ESP8266 devices. A server-client protocol configuration has been used to verify the functionality of the authentication protocol. Our findings indicate that the protocol used approximately 7% of flash memory and 48% of static random-access memory (SRAM) in the sensor node during the authentication process. Hence, the proposed scheme is suitable to be used for resource-constrained IoT devices such as WSN.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zhaozhuo Xu ◽  
Fangling Pu ◽  
Xin Fang ◽  
Jing Fu

Wireless sensor networks are proved to be effective in long-time localized torrential rain monitoring. However, the existing widely used architecture of wireless sensor networks for rain monitoring relies on network transportation and back-end calculation, which causes delay in response to heavy rain in localized areas. Our work improves the architecture by applying logistic regression and support vector machine classification to an intelligent wireless sensor node which is created by Raspberry Pi. The sensor nodes in front-end not only obtain data from sensors, but also can analyze the probabilities of upcoming heavy rain independently and give early warnings to local clients in time. When the sensor nodes send the probability to back-end server, the burdens of network transport are released. We demonstrate by simulation results that our sensor system architecture has potentiality to increase the local response to heavy rain. The monitoring capacity is also raised.


2013 ◽  
Vol 303-306 ◽  
pp. 1470-1474
Author(s):  
Shu Jiang Li ◽  
Nan Xue ◽  
Xiang Dong Wang

An embedded controller in green house is designed and analyzed in this paper, which is consisted of embedded terminal and wireless sensor node. The captured data by sensor nodes will be sent to the base station, after which, certain information will be sent to controller by the base station through RS232 protocol. The controller is used for receiving, displaying, storing the temperature information and controlling the temperature according to some related settings, which is implemented with ARM 9 micro processor and embedded Linux OS. The system is confirmed to be stable and reliable in field practice, which fulfills the design specification


Author(s):  
Zhenhuan Zhu ◽  
S. Olutunde Oyadiji ◽  
Samir Mekid

The energy harvesting for wireless sensor nodes is one of the effective methods to extend the lifespan of wireless sensor networks. The paper firstly analyzes the power requirement of a sensor node, and surveys the energy output for typical energy transducers working indoor. In general, energy harvested from the indoor environment is not matched with the power requirement of wireless sensor nodes. The harvested energy indoor is generally less than the required energy. Therefore, we propose a solution to design a middleware for the dynamic power management of a wireless sensor node. The implementation and performance evaluation of the middleware are investigated. It is shown that the proposed middleware is an effective way of solving the challenge problem above.


Wireless sensor network (WSN) consists of autonomous sensor devices that are spatially distributed in a wide area. Wireless sensor network is built up from a large number of sensor nodes that are assigned to a specific tasks and most probably is monitoring and reporting tasks. However, since the network might be expanded to hundreds, thousands or even millions of sensor nodes, there will be a high chance for the data from different wireless sensor nodes to collide with one another. Therefore, a proper node addressing scheme is needed to synchronize the data packages transmissions to the sink station. In this paper, a seven bytes addressing string scheme is proposed to encapsulate the node data and assist the sink station in identifying the data packages sources. The addressing string will be created in the wireless sensor node which it contains the node ID, package ID and the node data as well. The package ID is included to detect collided packages within the network. The data packages collision is avoided by allowing the sensor node to access the RF channel and transmit the data at a random time. The experimental results reviled that the proposed scheme was successfully addressed the wireless sensor node and make node identification at the sink station easy.


2019 ◽  
Vol 11 (21) ◽  
pp. 6171 ◽  
Author(s):  
Jangsik Bae ◽  
Meonghun Lee ◽  
Changsun Shin

With the expansion of smart agriculture, wireless sensor networks are being increasingly applied. These networks collect environmental information, such as temperature, humidity, and CO2 rates. However, if a faulty sensor node operates continuously in the network, unnecessary data transmission adversely impacts the network. Accordingly, a data-based fault-detection algorithm was implemented in this study to analyze data of sensor nodes and determine faults, to prevent the corresponding nodes from transmitting data; thus, minimizing damage to the network. A cloud-based “farm as a service” optimized for smart farms was implemented as an example, and resource management of sensors and actuators was provided using the oneM2M common platform. The effectiveness of the proposed fault-detection model was verified on an integrated management platform based on the Internet of Things by collecting and analyzing data. The results confirm that when a faulty sensor node is not separated from the network, unnecessary data transmission of other sensor nodes occurs due to continuous abnormal data transmission; thus, increasing energy consumption and reducing the network lifetime.


Sign in / Sign up

Export Citation Format

Share Document