scholarly journals Evaluate Compressive Strength of Geopolymer by Using Different Fibers and Curing Conditions

Day by day conservatory emissions is increases on earth. In manufacture of Portland cement(PC), obliquely we are escalating the carbon dioxide in atmosphere by the invention of PC.. Industrial by-products such as fly ash(FA), ground granulated blast furnace slag(GGBS), rice husk, bagasse, etc. are mainly used in manufacturing industry because these resources contain good bonding assets, amplified stability and decreased the porosity. evaluate to PC these assets are inexpensively good. Auxiliary by means of these manufacturing by products we are eventually lessening the carbon dioxide. PC with the manufacturing by products such as FA, bagasse , GGBS, Rice Husk Ash, Metakaolin etc., In these materials GGBS, FA, bagasse are commonly used for bursting substitution of PC. match up to PC GGBS, FA, rice husk be as well offer privileged compressive strength results when activate by alkali with similar curing’s. This concrete is known as Geo polymer concrete(GPC). To prepare the GPC we require alkali solutions(AS) like NaOH and Na2SiO3 . arrange the AS, by considering singular molarities of NaOH like 9M and 14M and singular concentrations of Na2SiO3 like 40%. get ready the AS of NaOH and Na2SiO3 discretely one hour before the mixing of GPC. dispose the cubes to find the mechanical properties such as compressive strength, and density of GPC. The specimens were tested after 28 days of special curing’s. To improve the properties of GPC, we are accumulation different fibers and go on it for 28 days of different curing conditions of GPC. finally we know the compressive strengths of different fibers and curing conditions of GPC

This paper aims to investigate the influence of alkaline activators solution i.e, Na2SiO3 / NaOH on compressive strength of geopolymer concrete mixed with Ground Granulated Blast furnace slag (GGBS) for constant molarity 8 M. The ratio of alkali to binder ratio is taken as 0.5 and the ratio of Na2SiO3 / NaOH is 2.5. The geopolymer mix is based on pervious sutdies. As per Indian standard size moulds for the cube, cylinder and prism are cast, cured and tested.The specimens were tested for fresh concrete properties such as slump cone test and hardened properties such as compressive strength for cubes, split tensile strength for cylinders and flexural strength for prism different days of curing under ambient temperature. Also, a microstructural study is done by using Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX) for the tested sample. It is found from the test results that, with the aid of alumino-silicate solution, early strength is achieved by geopolymer concrete within 7 days under ambient condition due to the presence of ground granulated slag.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1207 ◽  
Author(s):  
Joanna Julia Sokołowska

The durability of building composites with polymer matrix, such as polymer concretes, is considered high or excellent. However, very few studies are available that show the properties of such composites tested long after the specimens’ preparation, especially composites with fillers other than traditional rock aggregates. The paper presents the long-term compressive strength of polymer concrete containing common and alternative fine fillers, including quartz powder (ground sand) and by-products of the combustion of Polish fossil fuels (coal and lignite), tested nine or 9.5 years after preparation. The results were compiled with the data for respective specimens tested after 14 days, as well as 1.5 and 7 years. Data analysis confirmed the excellent durability of concrete-like composites with various fillers in terms of compressive strength. Density measurements of selected composites showed that the increase in strength was accompanied by an increase in volumetric density. This showed that the opinion that the development of the strength of composites with polymer matrices taking place within a few to several days was not always justified. In the case of a group of tested concrete-like composites with vinyl-ester matrices saturated with fly ashes of various origins, there was a further significant increase in strength over time.


2018 ◽  
Vol 766 ◽  
pp. 305-310 ◽  
Author(s):  
Chayanee Tippayasam ◽  
Sarochapat Sutikulsombat ◽  
Jamjuree Paramee ◽  
Cristina Leonelli ◽  
Duangrudee Chaysuwan

Geopolymer is a greener alternative cement produced from the reaction of pozzolans and strong alkali solutions. Generally, the cement industry is one of largest producers of CO2that caused global warming. For geopolymer mortar usage, Portland cement is not utilized at all. In this research, geopolymer mortars were prepared by mixing metakaolin, various wastes (fly ash, bagasse ash and rice husk ash) varied as 80:20, 50:50 and 20:80, 15M NaOH, Na2SiO3and sand. The influence of various parameters such as metakaolin to ashes ratios and pozzolans to alkali ratios on engineering properties of metakaolin blended wastes geopolymer mortar were studied. Compressive strength tests were carried out on 25 x 25 x 25 mm3cube geopolymer mortar specimens at 7, 14, 21, 28 and 91 air curing days. Physical and chemical properties were also investigated at the same times. The test results revealed that the highest compressive strength was 20% metakaolin - 80% fly ash geopolymer mortar. When the curing times increases, the compressive strength of geopolymer mortar also increases. The mixing of metakaolin and bagasse ash/rice husk ash presented lower compressive strength but higher water absorption and porosity. For FTIR results, Si-O, Al-O and Si-O-Na+were found. Moreover, the geopolymer mortar could easily plastered on the wall.


2021 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Agung Prayogi

Abstract Concrete is the most widely used material throughout the world and innovations continue to be carried out to produce efficient development. Shell charcoal ash and rice husk ash are industrial by-products which have the potential to replace sand for concrete mix, especially in Indragiri Hilir. The research with the title "Effect of Mixture of Rice Husk Ash and Shell Ash Ashes as Substitute for Some Fine Aggregates Against Concrete Compressive Strength" aims to prove the effect of a mixture of shell charcoal ash and husk ash to replace some of the sand to produce maximum compressive strength. Concrete is a mixture of Portland cement, fine aggregate, coarse aggregate, and water. This research uses 5 variations of the mixture to the weight of sand, BSA 0 without a substitute mixture, BSA 1 with a mixture of 5% husk ash and 10% shell charcoal, BSA 2 with a mixture of 5% husk ash and 15% charcoal ash, BSA 3 with a mixture of 5% husk ash and 18% charcoal, BSA 4 with a mixture of 10% husk and 10% charcoal, and BSA 5 with a mixture of 13% husk ash and 10% charcoal ash. SNI method is used for the Job Mix Formula (JMF) mixture in this research. The results of the average compressive strength of concrete at 28 days for JMF of 21.05 MPa, BSA 1 of 23.68 MPa, BSA 2 of 22.23 MPa, BSA 3 of 14.39 MPa, BSA 4 of 13.34 MPa , and BSA 5 of 20.14 MPa. The conclusion drawn from the results of the BSA 1 research with a mixture of 5% husk ash and 15% charcoal ash produced the highest average compressive strength of 23.68 MPa. Abstrak Beton merupakan material paling banyak digunakan diseluruh dunia dan terus dilakukan inovasi untuk menghasilkan pembangunan yang efisien. Abu arang tempurung dan abu sekam padi merupakan hasil sampingan industri yang berpotensi sebagai pengganti pasir untuk campuran beton, khususnya di Indragiri Hilir. Penelitian dengan judul “Pengaruh Campuran Abu Sekam Padi dan Abu Arang Tempurung Sebagai Pengganti Sebagian Agregat Halus Terhadap Kuat Tekan Beton” ini bertujuan membuktikan adanya pengaruh campuran abu arang tempurung dan abu sekam untuk mengganti sebagian pasir hingga menghasilkan kuat tekan maksimum. Beton adalah campuran antara semen portland, agregat halus, agregat kasar, dan air. Penelitian ini menggunakan 5 variasi campuran terhadap berat pasir, BSA 0 tanpa campuran pengganti, BSA 1 dengan campuran 5 % abu sekam dan 10% arang tempurung, BSA 2 dengan campuran 5% abu sekam dan 15% abu arang, BSA 3 dengan campuran 5% abu sekam dan 18% arang, BSA 4 dengan campuran 10% sekam dan 10% arang, dan BSA 5 dengan campuran 13% abu sekam dan 10% abu arang. Metode SNI digunakan untuk campuran Job Mix Formula (JMF)  pada penelitian ini. Hasil rata-rata kuat tekan beton pada umur 28 hari untuk JMF sebesar 21,05 MPa, BSA 1 sebesar 23,68 MPa, BSA 2 sebesar 22,23 MPa, BSA 3 sebesar 14,39 MPa, BSA 4 sebesar 13,34 MPa, dan BSA 5 Sebesar 20,14 MPa. Ditarik kesimpulan dari hasil penelitian BSA 1 dengan campuran 5% abu sekam dan 15% abu arang menghasilkan rata-rata kuat tekan tertinggi yaitu sebesar 23,68 MPa.  


2021 ◽  
Vol 11 (2) ◽  
pp. 127-136
Author(s):  
Sadaf Noshin ◽  
M. Adil Khan ◽  
M. Salman ◽  
M. Shahzad Aslam ◽  
Haseeb Ahmad ◽  
...  

Abstract In construction industry, demolished construction waste is recently used as reprocessed aggregate to produce environmentally friendly concrete which is a good substitute to normal crush due to increased demand of ecological growth and conservation benefits. Though, the properties of recycled aggregate concrete are smallest as compared to concrete produced from natural aggregate and these properties can be enhanced by adding some materials having cementitious properties. Rice husk ash (RHA) is used as partial replacement of cement in recycled aggregate concrete to improve the properties as well as to conserve the natural resources. The elementary purpose of this investigation is to determine the compressive strength of concrete by the replacement of cement with different percentages of rice husk ash such as 0%, 7.5%, 10%, 12.5%, 15%, and 17.5% respectively with different curing conditions. For the experimental program approximate 198 cylinders (18 for rapid curing, 90 for normal water curing and 90 for acid curing) are casted with the mix proportion of 1:2:4 and water to cement ratio of 0.50 whereas curing is done at the ages of 3,7,14,21 and 28 days. Various experiments are performed on fresh and hardened concrete to determine the effects of rice husk ash on recycled aggregate concrete with different curing conditions. Linear regression analysis is carried out to determine the compressive strength of concrete. It is pragmatic from the slump test results that the workability of recycled aggregate concrete is decreased by increasing the quantity of rice husk ash. This reduction in slump is due to high water absorption of recycled aggregates and rice husk ash. Further, the compressive strength of recycled aggregate concrete with normal and acid curing is decreased by increasing the percentages of rice husk ash. It is also observed that at 28- days of normal water curing for mix M1,M2,M3,M4,M5 and M6 the compressive strength is increased by 0.96%, 2.74% 1.45%,4.50%,4.23% and 4.22% respectively as compared to the compressive strength values at 28 days of acid water curing. Therefore, it is concluded that recycled aggregate concrete with 10 to 12% of rice husk ash is suitable for properties of concrete. The acid water curing has negative impacts on hardened properties of concrete as it reduced the compressive strength of concrete as compared to normal water curing.


MRS Advances ◽  
2018 ◽  
Vol 3 (34-35) ◽  
pp. 2009-2014 ◽  
Author(s):  
Philbert Nshimiyimana ◽  
David Miraucourt ◽  
Adamah Messan ◽  
Luc Courard

ABSTRACTEarth stabilization, using two by-products available in Burkina Faso: Calcium Carbide Residue (CCR) and Rice Husk Ash (RHA), improved the performance of compressed earth blocks (CEBs). The effect of adding CCR or CCR: RHA (in various ratios) to the clayey earth was investigated. CEBs were molded by manually compressing moisturized mixtures of earthen materials and 0-15 % CCR or CCR: RHA (various ratios) with respect to the weight of earthen material. The results showed that, with 15 % CCR: RHA in 7: 3 ratio, the compressive strength of CEBs (6.6 MPa) is three times that of the CEBs containing 15 % CCR alone (2.2 MPa). This improvement was related to the pozzolanic reaction between CCR, clay and RHA. These CEBs comply with the requirement for wall construction of two-storey housing.


2019 ◽  
Vol 9 (2) ◽  
pp. 183-186
Author(s):  
Abdul Razzaque Sandhu ◽  
Touqeer Ali Rind ◽  
Shahbaz Ali Kalhoro ◽  
Rahol Lohano ◽  
Faizan Hyder Laghari

Abstract Mortar is widely used in the construction industry for different purposes. Its compressive strength is the main parameter which is brought under focus. Compressive strength of mortars depends upon many factors such as water-cement ratio, fine aggregates size, and different curing conditions. This experimental study was undertaken to investigate the effect of GGBFS on compressive strength of mortars under different curing regimes using GGBFS as a partial replacement of cement. A total of 60 cubes of standard size of 2 x 2 x 2 inches were casted in laboratory, out of which 12 cubes each were prepared with 0%, 5%, 10%, 15% and 20% GGBFS replacement for cement. Cubes were cured for 3, 7, 14 and 28 days. Bases on obtained results it is observed that the maximum compressive strength was achieved by sample with 5% GGBFS, although 10% GGBFS samples achieved higher compressive strength than the control sample with 0% GGBFS. Further replacement beyond this value causes reduction in strength.


2015 ◽  
Vol 77 (12) ◽  
Author(s):  
Nur Hafizah A. Khalid ◽  
Mohd Warid Hussin ◽  
Mohammad Ismail ◽  
Mohamed A. Ismail ◽  
Azman Mohamed ◽  
...  

Polymer concrete is produced from polymer binder, aggregates, and filler. Its curing follows the polymerization process once polymer additive is added, and can be accelerated through post-curing. In this study, the Orthophthalic- and Isophthalic-based polymer concrete (Ortho-PC and Iso-PC) were cured and investigated at different curing temperature (30oC, 50oC and 70oC) and period (1, 3, 6, 16, 24 hours) to complete the compressive strength development. Effect of curing temperature and period on apparent density, compressive strength, and morphology properties were investigated. The outcomes exhibited that all specimens had achieved full compressive strength within 6 hours of curing time at both 50oC and 70oC. When cured at 30oC, this went up to more than 16 hours of curing period to achieve the same compressive strength. The form of crosslinking at different curing conditions was captured in Scanning Electron Microscope, SEM images. Results also showed that curing temperature and period insignificant affected the apparent density. This study can be used as references to manufacturer, fabricator, and engineers when dealing with polymer concrete which goes for post-curing method as curing process.


2018 ◽  
Vol 765 ◽  
pp. 280-284 ◽  
Author(s):  
Osama Ahmed Mohamed ◽  
Omar Fawwaz Najm ◽  
Waddah Al Hawat

The environmental footprint of the construction industry in general must be reduced. The process of manufacturing cement involves the release of appreciable amounts of CO2 into the atmosphere. This paper summarizes the findings of an experimental study aiming at assessing the splitting tensile strength of self-consolidating concrete (SCC) in which 90% of the cement was replaced with various amounts of the industrial by-products including silica fume, fly ash, and ground granulated blast furnace slag (GGBS). Due to the high replacement ratio of cement with recycled industrial by-products, the produced SCC is referred in this study as green concrete. The compressive strength ranged between 30 MPa and 50 MPa and was produced with water/cementitious material ratios of 0.33 and 0.36. The splitting tensile strength was determined and a correlation was developed using regression analysis between the splitting tensile strength and compressive strength.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1434-1439 ◽  
Author(s):  
Shin Ichiro Hashimoto ◽  
Kazuo Hiratsuka ◽  
Chikanori Hashimoto ◽  
Takeshi Watanabe

In this research, we have carried out the fundamental research on development of high strength concrete using the powder combining three industrial by-products as substitute of cement. The by-products used were fly ash of type II, ground granulated blast-furnace slag and gypsum. As a result,-it was possible to make a high strength paste, using vibrating compaction, with a water-powder ratio of 25%, The paste had compressive strength greater than 60 N/mm2 after curing for 91 days. Further we found it was possible to make high strength concrete of varying sand-aggregate ratios which all had a compressive strength of about 30 N/mm2 after curing for 28 days and 40 N/mm2 after curing for 91 days. Finally we obtained the optimum mixture proportion of concrete is unit water content = 170 kg/m3, water-powder ratio = 25%, and sand-aggregate ratio = 40%, For each of these results no cement was used.


Sign in / Sign up

Export Citation Format

Share Document