scholarly journals Evaluation of Mechanical Properties of GFRP Composites with Fillers

The usage of GFRP composites are gradually increasing day by day because of its unique properties over conventional metals. GFRP composite materials are much stronger and contain less weight than the metals which are using in more industries like Automobiles. And it was noticed that the properties of the GFRP composites are decreasing noticeably in certain environmental conditions. So, it is important to improve the quality and mechanical properties of the GFRP composites that they use to odder environmental conditions. From the farmer literature it was observed that adding filler materials to the composite adhesive can enhance the strength and properties of the composite material. In this investigation two filler materials (Znso4, talc) are added to the composites in certain ratios (1%,3%,5% and 7%). And to observe the mechanical properties specimens are placed in water for 30 days, and mechanical tests were performed on the specimens. And It was observed when fillers are added to the matrix of the composite the mechanical properties are increased when it compares to the no filler added composites. Properties are enhanced when the certain ratio of filler were added. Again properties are decreased when the high amount of fillers were added. And high tensile properties were observed when the 3% of filler added. And flexural properties and ILSS properties are enhanced when 1% of filler added.

2012 ◽  
pp. 189-198 ◽  
Author(s):  
Jelena Petrovic ◽  
Darko Ljubic ◽  
Marina Stamenovic ◽  
Ivana Dimic ◽  
Slavisa Putic

The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite materials. This study represents a contribution to the field of mechanical properties of the recycled composite materials. The tension mechanical properties (tensile strength and modulus of elasticity) of once used and disposed glass-epoxy composite material were compared before and after the recycling. The obtained results from mechanical tests confirmed that the applied recycling method was suitable for glass-epoxy composite materials. In respect to the tensile strength and modulus of elasticity it can be further assessed the possibility of use of recycled glass-epoxy composite materials.


2019 ◽  
Vol 945 ◽  
pp. 493-497
Author(s):  
Y. Shchetinin ◽  
Y. Kopylov ◽  
A. Zhirkov

The presented work reviews the research in the field of production of nanostructured composite materials based on copper, reinforced with carbon nanostructures. Particular attention is paid to the use of composites with high thermal conductivity as structural materials. The method of manufacturing a composite material based on copper is described in detail: modes of preliminary annealing, pre-pressing, hot isostatic pressing. The characteristics of the matrix and alloying components are given, and also preliminary treatment of copper powder and carbon nanotubes is described. Different mechanisms of component mixing are considered, the process of mechanical alloying in a planetary mill is described in detail, the results of measuring the thermal conductivity of samples are given. The mechanical characteristics of the samples are considered in detail: ultimate strength, yield strength, elongation. The degree of influence of surfactants on the uniformity of the distribution of alloying components and the mechanical properties of the composite material is determined.


2001 ◽  
Vol 9 (5) ◽  
pp. 333-338 ◽  
Author(s):  
Mitsuhiro Shibata ◽  
Retsu Makino ◽  
Ryutoku Yosomiya ◽  
Hiroyuku Takeishi

Poly(butylene succinate) composites reinforced with short sisal fibre were prepared by melt mixing and subsequent injection moulding. The influence of fibre length, fibre content and the surface treatment of the natural fibres on the mechanical properties of the composites were evaluated. Regarding fibre length, the tensile and flexural properties of the composites had maxima at a fibre length of about 5 mm. The flexural and tensile moduli of the composites increased with increasing fibre content. Although the tensile strength hardly changed, the flexural strength increased up to a fibre content of 10 wt%. The dynamic mechanical analysis of the composites showed that the storage moduli at above ca.-16°C (corresponding to the glass transition temperature of the matrix) increased with increasing fibre content.


2020 ◽  
Vol 55 (11) ◽  
pp. 4717-4733 ◽  
Author(s):  
Nadiim Domun ◽  
Keith R. Paton ◽  
Bamber R. K. Blackman ◽  
Cihan Kaboglu ◽  
Samireh Vahid ◽  
...  

AbstractIn this study, the effects of adding nanofillers to an epoxy resin (EP) used as a matrix in glass fibre-reinforced plastic (GFRP) composites have been investigated. Both 1D and 2D nanofillers were used, specifically (1) carbon nanotubes (CNTs), (2) few-layer graphene nanoplatelets (GNPs), as well as hybrid combinations of (3) CNTs and boron nitride nanosheets, and (4) GNPs and boron nitride nanotubes (BNNTs). Tensile tests have shown improvements in the transverse stiffness normal to the fibre direction of up to about 25% for the GFRPs using the ‘EP + CNT’ and the ‘EP + BNNT + GNP’ matrices, compared to the composites with the unmodified epoxy (‘EP’). Mode I and mode II fracture toughness tests were conducted using double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively. In the quasi-static mode I tests, the values of the initiation interlaminar fracture toughness, $$ G_{\text{IC}}^{\text{C}} $$GICC, of the GFRP composites showed that the transfer of matrix toughness to the corresponding GFRP composite is greatest for the GFRP composite with the GNPs in the matrix. Here, a coefficient of toughness transfer (CTT), defined as the ratio of mode I initiation interlaminar toughness for the composite to the bulk polymer matrix toughness, of 0.68 was recorded. The highest absolute values of the mode I interlaminar fracture toughness at crack initiation were achieved for the GFRP composites with the epoxy matrix modified with the hybrid combinations of nanofillers. The highest value of the CTT during steady-state crack propagation was ~ 2 for all the different types of GFRPs. Fractographic analysis of the composite surfaces from the DCB and ENF specimens showed that failure was by a combination of cohesive (through the matrix) and interfacial (along the fibre/matrix interface) modes, depending on the type of nanofillers used.


2019 ◽  
Vol 8 (3) ◽  
pp. 211-221 ◽  
Author(s):  
Md. Nizam Uddin ◽  
Puttagounder S. Dhanasekaran ◽  
Ramazan Asmatulu

Abstract Bone regeneration is of great importance worldwide, because of various bone diseases, such as infections, tumors, and resultant fracture, birth defects, and bone loss due to trauma, explosion, or accident. Bone regeneration can be achieved by several materials and templates manufactured through various fabrication techniques. Uses of different materials and scaffold fabrication techniques have been explored over the past 20 years. In this research, polyetheretherketone (PEEK) was used to fabricate highly porous bionanocomposite foams for bone scaffolding. Melt casting and salt porogen (200–500 µm size) leaching methods were adapted to create an adequate pore size and the necessary percent of porosity, because pore size plays a vital role in cell implantation and growth. Porosity (75% and 85%) of the prepared scaffolds was adjusted by changing salt concentrations in the PEEK powder. Hydroxyapatite (HA) and carbon particles were used to improve cell attachments and interactions with the porous PEEK and to increase the mechanical properties of the scaffold materials. Carbon fiber (CF) and carbon nanotubes (CNTs) were uniformly dispersed into the PEEK powder before melt casting to enhance the mechanical properties and to observe the influence of the carbon particles on the properties of PEEK bionanocomposite foam. Compression test results of the fabricated bionanocomposites showed that HA and carbon particles are the potential filler materials for the enhancement of bionanocomposite mechanical properties. About 186% enhancement of compression modulus and 43% enhancement of yield strength were observed while incorporating only 0.5 wt% of CNTs into PEEK/HA bionanocomposites having 75% porosity, compared to PEEK/HA 20 wt% bionanocomposites. Micro-computed tomography (micro-CT) test results reveal that pore size and interconnectivity of the nanocomposite foams are in order and within the designed sizes. Mechanical tests proved that PEEK bionanocomposite foam has the potential for use in bone scaffolding and other biomedical applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Chern Chiet Eng ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Hidayah Ariffin ◽  
Wan Md. Zin Wan Yunus

Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.


2018 ◽  
Vol 3 (11) ◽  
pp. 37-41
Author(s):  
Tawfeeq W. Mohammed ◽  
Dalmn Yaseen Taha ◽  
Rafal R. Abdul-Ilah

This research has focused on the evaluation of raw materials that used in the wings of modern airplane. These materials either would be fiberglass, carbon-fiber or aramid based composites like Kevlar. These common materials have been selected and evaluated depending on experimental data obtained from mechanical tests. These tests include: hardness, tensile strength and bending stress. The tests based on ASTM standards for mechanical properties. The results show increasing in the hardness value of graphite-epoxy by 9% comparing with that of fiberglass and by 18% comparing with that of Kevlar-epoxy. The results also show an increasing in the maximum tensile strength of graphite-epoxy by 2.9 times to that of fiberglass and by 5.5 times to that of Kevlar-epoxy. Furthermore, the results of bending stress test show increasing of the maximum strength of Kevlar-epoxy by 30% comparing to that of glass fiber and by 75% comparing to that of graphite-epoxy.


2015 ◽  
Vol 825-826 ◽  
pp. 125-133 ◽  
Author(s):  
Bruno Jasper ◽  
Jan W. Coenen ◽  
Johann Riesch ◽  
Till Höschen ◽  
Martin Bram ◽  
...  

The composite material tungsten fiber-reinforced tungsten (Wf/W) addresses the brittleness of tungsten by extrinsic toughening through introduction of energy dissipation mechanisms. These mechanisms allow the release of stress peaks and thus improve the materials resistance against crack growth. Wf/W samples produced via chemical vapor infiltration (CVI) indeed show higher toughness in mechanical tests than pure tungsten. By utilizing powder metallurgy (PM) one could benefit from available industrialized approaches for composite production and alloying routes. In this contribution the PM method of hot isostatic pressing (HIP) is used to produce Wf/W samples. A variety of measurements were conducted to verify the operation of the expected toughening mechanisms in HIP Wf/W composites. The interface debonding behavior was investigated in push-out tests. In addition, the mechanical properties of the matrix were investigated, in order to deepen the understanding of the complex interaction between the sample preparation and the resulting mechanical properties of the composite material. First HIP Wf/W single-fiber samples feature a compact matrix with densities of more than 99% of the theoretical density of tungsten. Scanning electron microscopy (SEM) analysis further demonstrates an intact interface with indentations of powder particles at the interface-matrix boundary. First push-out tests indicate that the interface was damaged by HIPing.


2011 ◽  
Vol 10 (1-2) ◽  
pp. 03 ◽  
Author(s):  
J. L. V. Coelho ◽  
J. M. L. Reis

In this work, the mechanical response of a composite material based on glass fibers embedded in an epoxy resin was experimentally studied as a function of strain rate and temperature. It was shown that for the temperature range from 23 to 100 °C the elastic properties of the composite are significant affected and the strain rate influences only the ultimate strength. The experimental research data and the approaches presented in this work should significantly extend our knowledge of the effect of elevated temperatures on the mechanical behavior of high temperature polymer matrix composites.


2012 ◽  
Vol 602-604 ◽  
pp. 708-711
Author(s):  
Jun Cai ◽  
Nan Shi ◽  
Qiang Dou

Polylactic acid (PLA)/bagasse fiber (BF) composites were prepared via melt blending. The melting and crystallization behavior, morphology and mechanical properties of the composites were studied by means of differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and mechanical tests. The results indicate that the crystallization ability of PLA is improved with the addition of BF. Silane treatment improves the adhesion between BF and the matrix. Compared with pure PLA, the flexural modulus increases, while the notched impact strength decreases for BF/PLA composites.


Sign in / Sign up

Export Citation Format

Share Document