scholarly journals The Influence of Meteorological Variables on Air Pollutants Improvement using Hibiscus Cannabinus L. Kenaf Filter

Bauxite mining activities has led to serious consequences towards humans and environment in term of water pollution, air pollution and has extensively damaged the ecosystem of aquatic life. This study investigates the performance of Hibiscus Cannabinus L. (Kenaf) fibres in improving air pollutants. The influence of meteorological conditions i.e. temperature and wind speed, as well as the thickness of Kenaf fibre filter on the concentration of PM10, NH3, NO2 , and Cl2 after the Kenaf fiber treatment is established. The bauxite sample was collected near Kuantan Port, Pahang and a prototype was fabricated to test ability of the Kenaf fibres in improving air quality. Wind speed and temperature was modified to be similar as the actual conditions on site. The study found that the Kenaf fibre filter improved the concentration of PM10, NH3, NO2 , and Cl2 efficiently after air treatment. Two layers of Kenaf fiber filter showed better performance in removing air pollutants as compared to one-layer filter. One-layer filter is capable to improve 16% to 43% of PM10, NH3, NO2 , andCl2 concentration, whereas as high as 70% of pollutants can be removed when two-layer filter is utilized. The removal efficiencies of NH3 , NO2 , Cl2 and PM10 (with Kenaf) increased from 33%, 17%, 38% and 75% to 60%, 67%, 73% and 85% respectively when the wind speed increased from 900 rpm to 1200 rpm. In contrast, the percentages of removal decreased when higher temperature was applied. The removal of PM10, NH3, NO2 , andCl2 decreased from 75%, 60%, 69% and 41% to 57%, 50%, 65% and 39% respectively when the temperature was increased from 27 °C to 32 °C.

2011 ◽  
Vol 264-265 ◽  
pp. 743-747 ◽  
Author(s):  
Hazleen Anuar ◽  
N.A. Hassan ◽  
F. Mohd Fauzey

Thermoplastic Elastomer (TPE) composite reinforced with Hibiscus cannabinus, L fiber (kenaf fiber, KF) was prepared via melt blending method using internal mixer at temperature 180°C, screw rotational speed at 40rpm for 10 min. TPE matrix is a blend of polypropylene (PP) and ethylene-propylene-diene monomer (EPDM) at a ratio of 70:30. The optimum fiber loading were investigated from 0% to 20% by volume. The effect of coupling agent maleic anhydride polypropylene (MAPP) on the TPE composite has been investigated. The result shown that, with increasing the kenaf fiber content gradually increased the tensile strength and flexural strength for both treated and untreated PP/EPDM-KF composite. However, at 20% of kenaf fiber loading, it showed decreasing in impact strength due to brittleness of the samples. From the scanning electron micrograph (SEM) it has shown that the composite, with compatibilizer promotes better interaction between TPE and kenaf fiber.


2013 ◽  
Vol 315 ◽  
pp. 443-447 ◽  
Author(s):  
S.K.A. Saferi ◽  
Y. Yusof

As demand for clean and healthy environment, people make many alternate solutions to save the environment. To save trees and overcome landfill of waste material and waste disposal by burning activities issues (cause to losing energy and increase pollution), people nowadays take recycling as a recovery. Recycling waste paper into new product increased over the years. Shortage of wood supply required new sources of natural fiber for papermaking industry. Many researchers have studied new sources of natural fibers from non wood materials, such as oil palm residues, kenaf (Hibiscus Cannabinus), pineapple leaf, banana, and coconut fiber. Kenaf is choose as reinforcement agent for recycled waste paper to maximize the use of kenaf in industry application due its wide range of advantages where pineapple leaf are choose as reinforcement agent because abundantly of these material in Malaysia. Reinforcement of natural fiber into waste paper during recycling process expected to increased strength properties of final product. To understand the right and suitable processing method for kenaf fiber and pineapple leaf leaves previous work from other researchers are studied to investigate pulping procedure of natural fiber and its effect on mechanical strength.


2013 ◽  
Vol 421 ◽  
pp. 290-295
Author(s):  
Mohammad Taib Mohamad Nurul Azman ◽  
Abu Kassim Masitah ◽  
Ariff Jamaludin Mohd ◽  
Ismail Tayibbah

This research investigated the tensile and water absorption properties of kenaf fibre mat/polyester composites. Treatment using acetylation method has been introduced to improve the properties of product manufactured. The effects of acetylation treatment with three variations of time that were 1, 4 and 24 hours on the kenaf fibre mats were investigated. The MOE of the tensile of treated fibre mat/polyester composite for 1 hour was the highest with value 4589.61 MPa. The tensile strength of treated fibre mat/polyester composite for 4 hours was the highest with value 0.6213 MPa. For water absorption test, the results showed that fibre mat/polyester composite with treatment duration for 1 hour had the lowest water absorption that was 1.23% compared with treatment duration for 4 hours and 24 hours. For overall it can be concluded that the treatment duration of 1 hour was recommended for acetylation method when compared with 4 hours and 24 hours duration treatments. Using acetylation treatment on the kenaf fibre mat/polyester composites was showed improvement on composite and was recommended in short duration of treatment.


2014 ◽  
Vol 575 ◽  
pp. 46-49 ◽  
Author(s):  
Y.A. El-Shekeil ◽  
S.M. Sapuan

Natural fiber composites are getting much attention by researchers and industries. Natural fiber composites face the problem of incompatibility between fibers and polymers. Alkali treatment is the most common treatment for natural fiber composites. In this work, short “Kenaf (Hibiscus Cannabinus) Fiber” (KF) reinforced “Themoplastic ‎Polyurethane (TPU)” was prepared using Haake Polydrive R600 ‎internal mixer. After mixing, sheets for specimen cutting were prepared by compression molding. The aim of this work is to study the effect of alkali fiber treatment on stress-strain behavior of TPU/KF composites. Different alkali concentration was used, namely; 2, 4 and 6% NaOH. Tensile stress and strain were deteriorated with increase in NaOH concentration, while modulus increased slightly.


2011 ◽  
Vol 462-463 ◽  
pp. 1343-1348
Author(s):  
Sameer Adnan Ibraheem ◽  
Aidy Ali ◽  
Abdan Khalina

The purpose of this study was to develop effective green insulation boards fabricated from polyurethane (PU) reinforced with Kenaf fibres. Biocomposites having three different weight contents (40/60, 50/50 and 60/40 Kenaf / PU weight %) were manufactured. A fourth type was made from 60/40 NaOH-treated Kenaf / PU weight %. The results show that the elastic properties increased with Kenaf fibre content. The optimal performance was observed at a weight of 50% Kenaf fibres. In addition, kenaf fibres treated with NaOH exhibited significantly improved mechanical properties.


2014 ◽  
Vol 695 ◽  
pp. 155-158 ◽  
Author(s):  
Dandi Bachtiar ◽  
Januar Parlaungan Siregar ◽  
Ahmad Syahrizan bin Sulaiman ◽  
Mohd Ruzaimi bin Mat Rejab

Study on hybridization of two types of natural fibres reinforced thermoplastic composites was an alternative option in research on natural composites. This paper presents the investigation on tensile properties of combining sugar palm and kenaf fibres reinforced polypropylene composites. The hybrid composites were prepared with different amounts of fibres (i.e. 10%, 20% and 30% by weight percent) while the ratios between sugar palm and kenaf fibre are 30:70, 50:50 and 70:30. The composites have been fabricated using melt mixer technique and followed by compression molding process. The specimens were cut according ASTM Standard D638 for conducting the tensile testing. The results shown that tensile strength of composites tend to decreased when the content of loading fibres increased. Among the composites with different ratios, the hybrid composites that contain more kenaf fibres exhibit the higher value in tensile strength than the composites that contain more sugar palm fibres.


2009 ◽  
Vol 29 (14) ◽  
pp. 2192-2198 ◽  
Author(s):  
Nor Azowa Ibrahim ◽  
Kamarul Arifin Hadithon ◽  
Khalina Abdan

2020 ◽  
Author(s):  
Min Xie ◽  
Tijian Wang ◽  
Jie Shi ◽  
Mengmeng Li ◽  
Da Gao ◽  
...  

<p>Anthropogenic heat (AH) can affect regional meteorology and air quality. The spatial distributions of AH fluxes in the typical city clusters of China are estimated. Moreover, in order to study their impacts on regional atmospheric environment, these heat fluxes are incorporated into the modified WRF/Chem with the seasonal and the diurnal variation. The modeling results show that AH fluxes over YRD and PRD have been growing in recent years. The high values of AH can reach 113.5 W/m<sup>2</sup> in YRD and 60 W/m<sup>2</sup> in PRD, respectively. AH fluxes can significantly change the urban meteorology. In YRD, 2-m air temperature (T<sub>2</sub>) increases by 1.6 °С in January and 1.4°С in July, the planetary boundary layer height (PBLH) rises up by 140m in January and 160m in July, and 10-m wind speed (W<sub>10</sub>) is intensified by 0.7 m/s in January and 0.5 m/s in July. More moisture can be transported to higher levels, and increase the accumulative precipitation by 15-30% in July of YRD. In PRD, T<sub>2</sub> rises up by 1.1°С in January and over 0.5°С in July, the PBLH increases by 120m in January and 90m in July, W<sub>10</sub> is enhanced over 0.35 m/s in January and 0.3 m/s in July, and the accumulative precipitation is intensified by 20-40% in July. These changes in meteorology can influence the distribution of air pollutants as well. Due to the increase of PBLH, surface wind speed and upward movement, the concentrations of primary air pollutants decrease near surface and increase at the upper layers over the cities. Chemical effects can play a significant role in ozone changes over the urban areas of YRD, so ozone concentrations increase at surface and decrease at the upper layers. In PRD cities, however, the chemical effects play a significant role in ozone changes in winter, while the vertical movement can be the dominant effect in summer. Thus, ozone concentrations in big cities increase in January, but decrease at the lower layers and increase at the upper layers in July. In all, AH fluxes should not be ignored in urban meteorology and air quality assessments.</p>


2016 ◽  
Vol 16 (23) ◽  
pp. 15011-15031 ◽  
Author(s):  
Min Xie ◽  
Kuanguang Zhu ◽  
Tijian Wang ◽  
Wen Feng ◽  
Da Gao ◽  
...  

Abstract. Anthropogenic heat (AH) emissions from human activities can change the urban circulation and thereby affect the air pollution in and around cities. Based on statistic data, the spatial distribution of AH flux in South China is estimated. With the aid of the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem), in which the AH parameterization is developed to incorporate the gridded AH emissions with temporal variation, simulations for January and July in 2014 are performed over South China. By analyzing the differences between the simulations with and without adding AH, the impact of AH on regional meteorology and air quality is quantified. The results show that the regional annual mean AH fluxes over South China are only 0.87 W m−2, but the values for the urban areas of the Pearl River Delta (PRD) region can be close to 60 W m−2. These AH emissions can significantly change the urban heat island and urban-breeze circulations in big cities. In the PRD city cluster, 2 m air temperature rises by 1.1° in January and over 0.5° in July, the planetary boundary layer height (PBLH) increases by 120 m in January and 90 m in July, 10 m wind speed is intensified to over 0.35 m s−1 in January and 0.3 m s−1 in July, and accumulative precipitation is enhanced by 20–40 % in July. These changes in meteorological conditions can significantly impact the spatial and vertical distributions of air pollutants. Due to the increases in PBLH, surface wind speed and upward vertical movement, the concentrations of primary air pollutants decrease near the surface and increase in the upper levels. But the vertical changes in O3 concentrations show the different patterns in different seasons. The surface O3 concentrations in big cities increase with maximum values of over 2.5 ppb in January, while O3 is reduced at the lower layers and increases at the upper layers above some megacities in July. This phenomenon can be attributed to the fact that chemical effects can play a significant role in O3 changes over South China in winter, while the vertical movement can be the dominant effect in some big cities in summer. Adding the gridded AH emissions can better describe the heterogeneous impacts of AH on regional meteorology and air quality, suggesting that more studies on AH should be carried out in climate and air quality assessments.


Sign in / Sign up

Export Citation Format

Share Document