scholarly journals EFFECT OF PROBIOTIC BACTERIA AND LIPOPOLISACCHARIDES ON EPITELIOCYTES TIGHT JUNCTIONS OF RAT JEJUNUM

Author(s):  
O. V. Rybalchenko ◽  
O. G. Orlova ◽  
L. B. Zakharova ◽  
O. N. Vishnevskaya ◽  
A. G. Markov

Aim. The present study has been undertaken with the main objective the influence of probiotic bacteria Lactobacillus plantarum 8 РАЗ and Escherichia coli M17 and lipopolysaccharide on the ultrastructure of enterocytes tight junctions of mucous membranes of rat jejunum. Materials and methods. The study was carried out on E. coli lipopolysaccharide (Sigma-Aldrich, Germany) and probiotic bacteria L. plantarum 8PA3 and E. coli M17. Male Wistar rats were used. A comparative analysis of the ultrathin structure of enterocytes and tight junctions were carried out by successive incubation of rat jejunum with probiotic bacteria L. plantarum 8PA3 and E. coli Ml 7, with lipopolysaccharide and a complex of bacteria with LPS. Results. The effect of L. plantarum 8PA3 on the mucosa of rats jejunum on a number of characters was similar to E. coli Mil. It manifested by preservation of the intact structure of the intercellular space and tight junctions. At the same time, hollow spherical inclusions with fragments of bacteria surrounded by membranes detected in the cytoplasm of enterocytes testified to the possibility of penetration of probiotic bacteria through the mucous membrane of the jejunum by a transcellular pathway With simultaneous action on enterocytes of rats jejunum of probiotic bacteria and lipopolysaccharide complex no destructive changes in the structure of dense contacts were observed, however, in a significant number of cases, bacterial cells were found in the intercellular space next to the goblet cells. Conclusion. A similar effect of Gram-positive bacteria L. plantarum 8PA3 and Gram-negative bacteria E. coli Ml 7 and their complexes with lipopolysaccharide on the jejunum epitheliocytes was revealed. Morphological analysis showed that lipopolysaccharide might influence on parasel-lular transport by probiotic bacteria. In the absence of LPS, probiotic bacteria can possibly penetrate the mucosa of rats jejunum by a transcellular pathway.

Author(s):  
O. N. Vishnevskaya ◽  
O. V. Rybalchenko ◽  
I. V. Larionov ◽  
O. G. Orlova ◽  
A. G. Markov

Aim. Comparative study of tight junctions and ultrastructure alterations of enterocytes of mucous membranes of jejunum of rats under the effect of lipopolysaccharides and cholera toxin. Materials and methods. Lipopolysaccharides (Sigma-Aldrich, Germany) and cholera toxin (Sigma-Aldrich, Germany) were used. The study was carried out in Wistar line rats. Effect of lipopolysaccharides and cholera toxin on epitheliocytes was carried out by a method of withdrawal of segments of rat jejunum and their incubation with the specified substances. Comparative analysis of ultrathin sections of enterocytes of jejunum of rats and tight junctions between them was carried out in control and under the effect of lipopolysaccharides and cholera toxin. Results. Effect of lipopoly-saccharides on ultrastructure of enterocytes of rat jejunum manifested in the change of cell form as a result of increase of intercellular space without destruction of tight junctions. Disappearance of desmosomes, increase of nuclei and more pronounced ER were noted in some epitheliocytes. Effect of cholerogen on epitheliocytes of mucous membrane of rat jejunum by a number of signs is similar to the effect of lipopolysaccharides, that manifested in an alteration of ultrastructure of cell, the form of those also transformed as a result of an increase of intercellular space, this process was not accompanied by destruction of tight junctions. Disappearance of folding of the lateral region of plasmatic membrane of cells and a reduction of a number of microvilli was observed under the effect of cholera toxin. Conclusion. A similar character of effect of lipopolysaccharides and cholera toxins on ultrastructure of cells and region of tight junctions of enterocytes of rat jejunum was detected, both substances caused an increase of intercellular space without the destruction of tight junctions.


Author(s):  
A. M. Korotkova ◽  
O. V. Kvan ◽  
I. A. Vershinina ◽  
S. V. Lebedev

An important route of metal intake from NP preparations is the pathway through absorption by bacterial cells of the gastrointestinal tract. This changes the composition of the microflora. Thus, giving animals NP Cu is accompanied by an increase in the total number of bacteria and lactobacilli, and a decrease in the population of E. coli and Clostridium spp. When it enters the intestine, part of the NP is able to form a pool on the inner wall of the intestine, in connection with which it can act with microorganisms inhabiting the gastrointestinal tract. The intestinal microbiota is known to play a vital role in the nutritional and immunological functions of host animals. However, in the literature there is not enough data on the influence of NP on the intestinal microbiocenosis of various representatives of the animal world and humans. The aim of the study is to study the effect of Fe nanoparticles introduced by per os on representatives of the main physiological groups of microorganisms. 30 male Wistar rats aged 4 months, identical in weight (from 180 g), were selected on the basis of analogues. up to 250 g.), physiological state, were in the previous period of experience in a balanced diet on the recommendations. Preparations of NP Fe for the introduction of per os were prepared in isotonic saline solution, treated for 30 minutes on an ultrasonic dispersant. Nanoparticles in the required amount were mixed with rice. The frequency of giving NP Fe to animals in order to correct microbiocenosis with deficient diets is 1 time in 7 days. In this case, the introduction of 10 mg of iron per kg of animal weight showed the best results.


2020 ◽  
Vol 15 (1) ◽  
pp. 52-56
Author(s):  
Sri Winarti ◽  
Agung Pasetyo

The consumption of prebiotics is known to affect the balance of gut microbiota. The purpose of this study was to explore how a galactomannan-rich effervescent drink can affect the population of Lactobacillus, Bifidobacterium, E. coli, and the concentration of short-chain fatty acids in the cecum of rats. Twenty-eight male Wistar rats (aged 2 months) were divided equally into 7 groups and treated orally each day for 15 days with 2 mL effervescent drinks with increasing levels of prebiotic galactomannan. The dosage of 500 mg galactomannan increased the growth of Lactobacillus spp. and Bifidobacterium spp. with inhibition of the growth of E.coli with increased formation of short-chain fatty acids such as acetate, propionate, and butyrate in the cecum of rats.


2019 ◽  
Vol 35 (6) ◽  
pp. 67-72 ◽  
Author(s):  
I.V. Manukhov ◽  
L.S. Yaguzhinsky ◽  
M.V. Bermeshev ◽  
M.A. Zisman ◽  
V.G. Pevgov ◽  
...  

Toxic effect of 2-ethylnorbornane (2-ethyl(bicyclo[2.2.1]heptane) (EBH)) on bacteria has been studied using the E. coli pRecA-lux and E. coli pKatG- lux cells as lux-biosensors. It was shown that the addition of EBH to the incubation medium leads to death and growth retardation, high level oxidative stress and DNA damage in E. coli cells. It is assumed that the oxidation of EBH with atmospheric oxygen causes the formation of reactive oxygen species in the medium, which makes a major contribution to the toxicity of this substance. biosensor, luciferase, bioluminescence, inducible promoter, PrecA, PkatG The authors are grateful to Stanislav Filippovich Chalkin for the development of interdisciplinary ties in the scientific community. The work was financially supported by the Ministry of Higher Education and Science of Russia (Project Unique Identifier RFMEFI60417X0181, Agreement No. 14.604.21.0181 of 26.09.2017).


2020 ◽  
Vol 16 (6) ◽  
pp. 891-899 ◽  
Author(s):  
Wissam Zam

Probiotics are viable microorganisms widely used for their claimed beneficial effects on the host health. A wide number of researchers proved that the intake of probiotic bacteria has numerous health benefits which created a big market of probiotic foods worldwide. The biggest challenge in the development of these products is to maintain the viability of bacterial cells during the storage of the product as well as throughout the gastrointestinal tract transit after consumption, so that the claimed health benefits can be delivered to the consumer. Different approaches have been proposed for increasing the resistance of these sensitive microorganisms, including the selection of resistant strains, incorporation of micronutrients, and most recently the use of microencapsulation techniques. Microencapsulation has resulted in enhancing the viability of these microorganisms which allows its wide use in the food industry. In this review, the most common techniques used for microencapsulation of probiotics will be presented, as well as the most usual microcapsule shell materials.


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pedro Seguí ◽  
John J. Aguilera-Correa ◽  
Elena Domínguez-Jurado ◽  
Christian M. Sánchez-López ◽  
Ramón Pérez-Tanoira ◽  
...  

AbstractThis study was designed to propose alternative therapeutic compounds to fight against bacterial pathogens. Thus, a library of nitrogen-based compounds bis(triazolyl)methane (1T–7T) and bis(pyrazolyl)methane (1P–11P) was synthesised following previously reported methodologies and their antibacterial activity was tested using the collection strains of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. Moreover, the novel compound 2P was fully characterized by IR, UV–Vis and NMR spectroscopy. To evaluate antibacterial activity, minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), minimum biofilm inhibitory concentrations (MBICs), and minimum biofilm eradication concentrations (MBECs) assays were carried out at different concentrations (2–2000 µg/mL). The MTT assay and Resazurin viability assays were performed in both human liver carcinoma HepG2 and human colorectal adenocarcinoma Caco-2 cell lines at 48 h. Of all the synthesised compounds, 2P had an inhibitory effect on Gram-positive strains, especially against S. aureus. The MIC and MBC of 2P were 62.5 and 2000 µg/mL against S. aureus, and 250 and 2000 µg/mL against E. faecalis, respectively. However, these values were > 2000 µg/mL against E. coli and P. aeruginosa. In addition, the MBICs and MBECs of 2P against S. aureus were 125 and > 2000 µg/mL, respectively, whereas these values were > 2000 µg/mL against E. faecalis, E. coli, and P. aeruginosa. On the other hand, concentrations up to 250 µg/mL of 2P were non-toxic doses for eukaryotic cell cultures. Thus, according to the obtained results, the 2P nitrogen-based compound showed a promising anti-Gram-positive effect (especially against S. aureus) both on planktonic state and biofilm, at non-toxic concentrations.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 295
Author(s):  
Sebastián Candelaria-Dueñas ◽  
Rocío Serrano-Parrales ◽  
Marisol Ávila-Romero ◽  
Samuel Meraz-Martínez ◽  
Julieta Orozco-Martínez ◽  
...  

In Tehuacán-Cuicatlán valley (Mexico), studies have been carried out on the essential oils of medicinal plants with antimicrobial activity and it was found that they present compounds in common such as: α-pinene, β-pinene, carvacrol, eugenol, limonene, myrcene, ocimene, cineole, methyl salicylate, farnesene, and thymol. The goal of this study was to assess the antimicrobial activity of essential oils’ compounds. The qualitative evaluation was carried out by the Kirby Baüer agar diffusion technique in Gram-positive bacteria (11 strains), Gram-negative bacteria (18 strains), and yeasts (8 strains). For the determination of the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), the agar dilution method was used. All the evaluated compounds presented antimicrobial activity. The compounds eugenol and carvacrol showed the largest inhibition zones. Regarding yeasts, the compounds ocimene, cineole, and farnesene did not show any activity. The compounds eugenol, carvacrol, and thymol presented the lowest MIC; bactericidal effect was observed at MIC level for S. aureus 75MR, E. coli 128 MR, and C albicans CUSI, for different compounds, eugenol, carvacrol, and thymol. Finally, this study shows that the essential oils of plants used by the population of Tehuacán-Cuicatlán valley share compounds and some of them have antibacterial and fungicidal activity.


2021 ◽  
pp. 088532822110044
Author(s):  
Haiyang Wang ◽  
Toshinari Maeda ◽  
Toshiki Miyazaki

Bone cement based on poly(methyl methacrylate) (PMMA) powder and methyl methacrylate (MMA) liquid is a very popular biomaterial used for the fixation of artificial joints. However, there is a risk of this cement loosening from bone because of a lack of bone-bonding bioactivity. Apatite formation in the body environment is a prerequisite for cement bioactivity. Additionally, suppression of infection during implantation is required for bone cements to be successfully introduced into the human body. In this study, we modified PMMA cement with γ-methacryloxypropyltrimetoxysilane and calcium acetate to introduce bioactive properties and 2-( tert-butylamino)ethyl methacrylate (TBAEMA) to provide antibacterial properties. The long-term antibacterial activity is attributed to the copolymerization of TBAEMA and MMA. As the TBAEMA content increased, the setting time increased and the compressive strength decreased. After soaking in simulated body fluid, an apatite layer was detected within 7 days, irrespective of the TBAEMA content. The cement showed better antibacterial activity against Gram-negative E. Coli than Gram-positive bacteria; however, of the Gram-positive bacteria investigated, B. subtilis was more susceptible than S. aureus.


2021 ◽  
Vol 7 (2) ◽  
pp. 40
Author(s):  
Semiha Duygu Sutekin ◽  
Mehtap Sahiner ◽  
Selin Sagbas Suner ◽  
Sahin Demirci ◽  
Olgun Güven ◽  
...  

Nitrogen-doped carbon dots (N-doped C-dots) was synthesized by using poly(vinyl amine) (PVAm) as a nitrogen source and citric acid (CA) as a carbon source via the hydrothermal method. Various weight ratios of CA and PVAm (CA:PVAm) were used to synthesize N-doped C-dots. The N-doped C-dots revealed emission at 440 nm with excitation at 360 nm and were found to increase the fluorescence intensity with an increase in the amount of PVAm. The blood compatibility studies revealed no significant hemolysis for N-doped C-dots that were prepared at different ratios of CA:PVAm for up to 500 μg/mL concentration with the hemolysis ratio of 1.96% and the minimum blood clotting index of 88.9%. N-doped C-dots were found to be more effective against Gram-positive bacteria than Gram-negative bacteria, with the highest potency on Bacillus subtilis (B. subtilis). The increase in the weight ratio of PVAm in feed during C-dots preparation from 1 to 3 leads to a decrease of the minimum bactericidal concentration (MBC) value from 6.25 to 0.75 mg/mL for B. subtilis. Antibiofilm ability of N-doped C-dots prepared by 1:3 ratio of CA:PVAm was found to reduce %biofilm inhibition and eradication- by more than half, at 0.78 mg/mL for E. coli and B. subtilis generated biofilms and almost destroyed at 25 mg/mL concentrations.


Sign in / Sign up

Export Citation Format

Share Document