scholarly journals Estimation of in situ strength from back-analysis of pit slope failure

Author(s):  
Ian Brown ◽  
Peter Wood ◽  
Marc Elmouttie
Keyword(s):  
2013 ◽  
Vol 734-737 ◽  
pp. 759-763 ◽  
Author(s):  
Yong Li ◽  
Yun Yi Zhang ◽  
Ren Jie Gao ◽  
Shuai Tao Xie

Jixi mine area is one of the early mined areas in China and it's a typical deep mine. Because of large deformation of underground roadway and dynamic disasters occurred frequently in this mine, five measurement points of in-situ stress in this mine was measured and then analyzed with inversion. Based on these in-situ stress measurement data, numerical model of 3D in-situ stress back analysis was established. According to different stress fields, related analytical samples of neural network were given with FLAC program. Through the determination of hidden layers, hidden nodes and the setting of parameters, the network was optimized and trained. Then according to field measurement of in-situ stress, back analysis of initial stress field was conducted. Compared with field measurement, with accuracy requirement satisfied, it shows that the in-situ stress of rock mass obtained is basically reasonable. Meanwhile, it proves that the measurement of in-situ stress can provide deep mines with effective and rapid means, and also provide reliable data to optimization of deep roadway layout and supporting design.


2014 ◽  
Vol 1020 ◽  
pp. 423-428 ◽  
Author(s):  
Eva Hrubesova ◽  
Marek Mohyla

The paper deals with the back analysis method in geotechnical engineering, that goal is evaluation the more objective and reliable parameters of the rock mass on the basis of in-situ measurements. Stress, deformational, strength and rheological parameters of the rock mass are usually determined by some inaccuracies and errors arising from the complexity and variability of the rock mass. This higher or lower degree of imprecision is reflected in the reliability of the mathematical modelling results. The paper presents the utilization of direct optimization back analysis method, based on the theory of analytical functions of complex variable and Kolosov-Muschelischvili relations, to the evaluation of initial stress state inside the rock massif.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


2021 ◽  
Vol 13 (23) ◽  
pp. 13452
Author(s):  
Kuo-Shih Shao ◽  
An-Jui Li ◽  
Chee-Nan Chen ◽  
Chen-Hsien Chung ◽  
Ching-Fang Lee ◽  
...  

This study presents the case of a landslide triggered by a high groundwater level caused by several days of continuous rainfall in the northeastern region of Taiwan. The slope where this landslide occurred consists of closely jointed and weathered bedrock. By means of finite element limit analysis and the Hoek–Brown failure criterion, this study performed a slope failure simulation similar to the actual landslide and deduced the reasonable value range for the combination of key Hoek–Brown failure criterion parameters through back analyses. The results indicate that the key parameters affecting the bedrock’s slope stability were the geological strength index (GSI) and the disturbance factor (D), whereas the effects of the unconfined compressive strength (σci) were less significant. The results of the back analysis reveal that the suitable D-value range and GSI of closely jointed and weathered sandstone in the northeastern region of Taiwan are 0.8 to 0.9 and 20 to 30, respectively. These back-analyzed value ranges can serve as a reference for broader applications in the preliminary stability analysis of similar rock slopes where it is difficult to perform in situ investigation.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Yu-xiao Wang ◽  
Yu-jie Wang ◽  
Long Jiang ◽  
Ping Sun ◽  
Xingchao Lin ◽  
...  

Dahuaqiao Hydropower Station is the sixth cascade hydropower project on the upper stream of the Lancang River, and a number of slope instabilities were found in the reservoir area before reservoir impoundment. The reservoir impoundment and fluctuation of the reservoir water level generally reactivate these potential slope failures or trigger new ones. Therefore, how to cope with the influence of these slope failures on dam safety has always been the focus of attention. However, it is unwise to stabilize all these potentially instable slopes by remedial measures. Based on a two-parameter and four-level back analysis method proposed in this paper, reasonable measures for landslide management are suggested on the basis of the in situ monitoring results and back analysis of geomaterial strength parameters.


2020 ◽  
Vol 500 (1) ◽  
pp. 1-12
Author(s):  
Joshu J. Mountjoy ◽  
Aggeliki Georgiopoulou ◽  
Jason Chaytor ◽  
Michael A. Clare ◽  
Davide Gamboa ◽  
...  

AbstractThe consequences of subaqueous landslides have been at the forefront of societal conscience more than ever in the last few years, with devastating and fatal events in the Indonesian Archipelago making global news. The new research presented in this volume demonstrates the breadth of ongoing investigation into subaqueous landslides, and shows that while events like the recent ones can be devastating, they are smaller in scale than those Earth has experienced in the past. Understanding the spectrum of subaqueous landslide processes, and therefore the potential societal impact, requires research across all spatial and temporal scales. This volume delivers a compilation of state-of-the-art papers covering regional landslide databases, advanced techniques for in situ measurements, numerical modelling of processes and hazards.


2012 ◽  
Vol 204-208 ◽  
pp. 196-201 ◽  
Author(s):  
Jian Cong Xu ◽  
Yi Wei Xu

The parabolic-apex numerical back-analysis method (PNBM) was proposed to obtain such physical-mechanics parameters as Young's modulus and lateral pressure coefficient of surrounding rock by 3D FEM numerical analysis based on in-situ monitoring data. Taking Xiang-an Subsea Tunnel (located in Xiamen, Fujian Province, China) for example, adopting the PNBM using ABAQUS software, three dimensional elastic-plastic FEM-PNBM of tunnel surrounding rock was validated using in-situ monitoring data. The results show as follows: Using the PNBM, not only may high calculation precision be obtained, better meeting the demand of actual projects, but also more reasonable and reliable physical mechanics indices of surrounding rock such as Young's modulus and lateral confinement pressure coefficient, may be obtained. The applicability and the simplicity of this proposed method also support its usefulness.


Geosciences ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 90 ◽  
Author(s):  
Paolo Ruggeri ◽  
Viviene M. E. Fruzzetti ◽  
Antonio Ferretti ◽  
Giuseppe Scarpelli

“La Sorbella” is a deep-seated existing landslide in a Miocene clayey formation located in central Italy. Given the interaction with a national road, this landslide has been monitored for a long time with inclinometers and hydraulic piezometers. Recently, the monitoring system was implemented by adding pressure transducers in the Casagrande cells and by equipping the old inclinometers with in-place probes, to allow a remote reading of the instruments and data recording. This system allowed to identify that the very small average rate of movement observed over one year (1.0–1.5 cm/year) is the sum of small single sliding processes, strictly linked to the sequence of rainfall events. Moreover, data recorded by in-place inclinometer probes detected the response of the landslide to the seismic sequence of 2016 occurring in central Italy. Such in situ measurements during earthquakes, indeed rarely available in the scientific literature, allowed an assessment of the critical acceleration of the sliding mass by means of a back-analysis. The possibility to distinguish the difference between seismic and rainfall induced displacements of the slope underlines the potential of continuous monitoring in the diagnosis of landslide mechanisms.


Sign in / Sign up

Export Citation Format

Share Document