scholarly journals HEAVY METAL (Cu, Zn, Fe, Mn, Pb, Cd) CONCENTRATION IN SOILS OF TYUMEN

Author(s):  
A. S. Petukhov ◽  
T. A. Kremleva ◽  
N. A. Khritokhin ◽  
G. A. Petukhova ◽  
P. I. Kaidunova

Toxic heavy metals contaminating soil get accumulated by plants, cause degradation of plant communities, and eventually penetrate human bodies with food. Therefore, it is urgent to investigate the content of heavy metal in soils in urban areas. The aim of this study was to investigate the concentration of Cu, Fe, Mn, Pb and Cd in soils of Tyumen. Top soil was sampled at the semi-clean control site near a highway, and at sites near metallurgical, motor-building, oil-refining and battery-manufacturing facilities in Tyumen, Russia. The concentration of active and acid-soluble forms of heavy metals was determined by atomic-absorption spectrophotometry. All the soil samples from urban areas were polluted with Fe. The samples collected near the battery manufactory and the metallurgical plant were contaminated with Pb and Zn, respectively, with maximum allowable concentration exceeded. The Cu, Mn and Zn content in most soil samples was higher than that in the control sample. The Cd content in all samples was at the lower limit of detection. The average percentages of active forms of Mn and Zn in soils were the highest among all the studied metals. The most intense accumulation of all heavy metals was observed near the battery manufactory and the metallurgical plant. The obtained results can be useful for environmental monitoring in Tyumen.

2018 ◽  
Vol 3 (1) ◽  
pp. 414-426
Author(s):  
A.O. Adekiya ◽  
A.P. Oloruntoba ◽  
S.O. Ojeniyi ◽  
B.S. Ewulo

Abstract The study investigated the level of heavy metal contamination in plants {maize (Zea mays) and tomato (Solanum lycopersicum L.)} from thirty soil samples of three locations (Epe, Igun and Ijana) in the Ilesha gold mining area, Osun State, Nigeria. Total concentrations of As, Cd, Co, Cr, Cu, Ni, Pb and Zn were determined using atomic absorption spectrophotometry. Spatial variations were observed for all metals across the locations which was adduced to pH and the clay contents of the soils of each location. The results showed that heavy metals are more concentrated in the areas that are closer to the mining site and the concentrations in soil and plants (maize and tomato) decreased with increasing perpendicular distance from the mining site, indicating that the gold mine was the main sources of pollution. The mean concentrations of heavy metals in plants (tomato and maize) samples were considered to be contaminated as As, Cd and Pb respectively ranged from 0.6 - 2.04 mg kg-1, 0.8 - 5.2 mg kg-1, 0.8 - 3.04 mg kg-1 for tomato and respectively 0.60 - 2.00 mg kg-1, 1.50 - 4.60 mg kg-1 and 0.90 - 2.50 mg kg-1 for maize. These levels exceeded the maximum permissible limits set by FAO/WHO for vegetables. In conclusion, monitoring of crops for toxic heavy metals is essential for food safety in Nigeria.


Author(s):  
Marcelle S. P. A. de Souza ◽  
Fabiana S. dos Santos ◽  
Luis M. S. Magalhães ◽  
Welington K. de Freitas ◽  
Givanildo de Gois ◽  
...  

ABSTRACT The present study aimed to determine heavy metal concentrations in the tree bark of the species Poincianella pluviosa in Volta Redonda municipality, Rio de Janeiro. Four sets of barks of eight trees with three replicates each from sectors 1 (W), 2 (S), 3 (E), and 4 (N) of the Volta Redonda center corresponding to the cardinal points were collected. The samples were digested in a nitroperchloric mixture and the lead (Pb), cadmium (Cd), nickel (Ni), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) contents were determined by atomic absorption spectrophotometry. The cluster analysis (CA) formed 12 groups; among them, group 3 (G3) showed the presence of all seven elements in sector 1 and group 8 (G8) showed the presence of Pb, Zn, Fe, Ni, and Mn in sector 2. Kruskal-Wallis and Bonferroni tests showed that all elements presented statistically different values among the four sectors when compared with each other (p > 0.05). Sectors 1, 2, and 3 had the highest concentrations of heavy metals, which are directly associated with vehicle and railroad flow and iron and steel activities that are concentrated in these sectors. Bark can be used as an effective method for the monitoring of air pollution in urban areas.


Toxics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 171
Author(s):  
Alexander Petukhov ◽  
Tatyana Kremleva ◽  
Galina Petukhova ◽  
Nikolay Khritokhin

This study was conducted in Tyumen (Russian Federation) to establish the effects of heavy metals’ (Cu, Zn, Fe, Mn, Pb, and Cd) accumulation in soil and coltsfoot, as well as plants’ biochemical responses to such an accumulation. The mobile and acid-soluble heavy metal fractions in soils, and the heavy metal contents in plants, were determined by atomic absorption spectrophotometry. The Cu, Zn, Fe, Mn, and Pb concentrations in soils exceeded background values. Pb content at the battery manufacturing plant was above the maximum permitted concentration. The percentages of the mobile heavy metal fractions decreased in the following order: Mn > Zn > Cu > Fe. The greatest heavy metal accumulation in soils and plants was found at the battery manufacturing and metallurgical plants examined in our study. Heavy metals’ accumulation in the aboveground part of Tussilago farfara decreased in the following order: Fe > Zn > Cu > Mn > Pb > Cd. The accumulation of heavy metals stimulated the synthesis of photosynthetic pigments by 6–30%. Heavy metals provoked oxidative stress in cells, increasing the concentration of lipid peroxidation in products by up to 80%. Plant phenolics and flavonoids in the urban area of our study decreased compared to those in the control by 1.05, reaching up to 6.5 times. The change in coltsfoot catalase activity both increased and declined. Biochemical responses and heavy metal accumulation in coltsfoot from urban areas limit its use for medicinal purposes.


2018 ◽  
Vol 7 (1) ◽  
pp. 110-115
Author(s):  
Galina Yurievna Samoilenko ◽  
Evgeniy Aleksandrovich Bondarevich ◽  
Natalia Nikolaevna Kotsyurzhinskaya ◽  
Igor Anatolyevich Boriskin

The paper presents data on the content of gross and mobile forms of zinc, cadmium, lead and copper in the soils of Chita and its surroundings. The paper contains a comparative analysis of the accumulation (Kn) and movement (KP) coefficients of these microelements in organs ( Potentilla tanacetifolia Willd. ex Schlecht.), relative to their gross content and mobile forms in soils. The authors have revealed that soil samples of the studied sites contain unequal gross amount of heavy metals. In some points (6 and 3) the content of cadmium and zinc exceeded the Mac, that is why such soils have been attributed to heavily polluted. The index of biological activity on mobile forms of heavy metals in all sites significantly exceeded the same index on gross forms. It was found that Potentilla tanacetifolia are accumulators of heavy metal ions. Aboveground bodies accumulate and absorb cadmium and copper especially intensively, thus the content of mobile forms of these metals in the soil is insignificant. Excessive adsorption of trace elements in the phytomass of plants can be connected with surface contamination. According to the content of zinc and lead, the accumulation values in the organs of P. tanacetifolia were characterized by small coefficient values, against the background of their high concentration in the soil.


Author(s):  
Aka J. Egwumah ◽  
Ishaq S. Eneji ◽  
Raymond A. Wuana

Leachates from dumpsite basically contain a wide range of heavy metals and selenium. However, heavy metals have negative public health and environmental impacts once the leachates are allowed to infiltrate into groundwater. This is one of the oldest, growing problems threatening the surrounding globally. Therefore, it is imperative to quantify the information on the environmental impact of heavy metal and selenium levels, and suggesting various techniques that could be used to clean-up their concentrations from the environment to the minimum to ameliorate the plight of the people. The aim of this study was to determine the concentration of heavy metal and selenium levels in leachate of Central Bank of Nigeria dumpsite along University of Agriculture Road-Makurdi and also to investigate their levels in soil around the dumpsite platform. The concentrations of some heavy metals such as Chromium (Cr), Lead (Pb), Cadmium (Cd), Mercury (Hg) and non metal Selenium (Se) levels in leachate from Central Bank of Nigeria Dumpsite platform and surrounding soil along University of Agriculture road, Makurdi, were determined using Atomic absorption spectrophotometry (Flame AAS) for Cr, Pb and Cd while cold vapour and hydride generation were used for Hg and Se respectively. The soil samples were collected at different depths (cm) 0 – 20, 20 – 40, 40 – 60 and 60 – 80. The levels of all heavy metals and non metal selenium in this study area were found to be higher than those of the control samples. The total mean concentration of the soil samples analysed for each metal and selenium levels at different depths range from Cr (74.7 – 2.6 mg/kg), Cd (7.41 – 0.6 mg/kg), Hg (4.45 – 1.4 mg/kg), Se (2.04 – 1.2 mg/kg) and Pb (8.53 – 1.7 mg/kg). The concentrations in leachates were Cr (0.079 mg/L), Cd (0.010 mg/L), but Pb, Hg and Se were not detected. The concentrations of Cr and Cd determined in leachate were below the WHO standard limits. Similarly, the concentrations of Pb, Hg and Se in soil analyzed in this study were within the permissible limits. However, the concentration of Cr and Cd were found to be higher than the permissible limits due to the increasing anthropogenic activities in the area. Awareness of the level of soil and leachate pollution around the dumpsite needs to be created urgently especially among people living in the environment. Proper and effective waste management plan should be developed and implemented.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Ghosia Lutfullah ◽  
Abid Ali Khan ◽  
Azra Yasmeen Amjad ◽  
Sajida Perveen

Various essential and toxic heavy metals (Ca, Mg, Cu, Zn, Fe, Mn, Pb, Cd, Cr, and Ni) contents in various types of dried (infant formulaandpowdered) and fluid (freshandprocessed) cow milk were assessed by atomic absorption spectrophotometry. The milk samples were collected from local markets of different parts of Peshawar city, Pakistan. Heavy metal concentrations varied significantly depending upon the type of milk. The heavy metal concentrations in most of the samples were within normal and permissible ranges. It was observed that the samples contained considerable amounts of calcium, while magnesium levels were well above the required levels. The results also revealed that copper levels were slightly lower than the permissible limits. The concentration of zinc in dried milk samples was greater than the values for the liquid milk types. Infant milk formulae had higher iron levels as compared to other milk samples because of the added constituents. Significant differences were observed in the mean values of manganese and cadmium in different types of milk. The toxic metals were within the acceptable limits and did not show significant levels leading to toxicity.


Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


2021 ◽  
Vol 11 (15) ◽  
pp. 7099
Author(s):  
Inkyeong Moon ◽  
Honghyun Kim ◽  
Sangjo Jeong ◽  
Hyungjin Choi ◽  
Jungtae Park ◽  
...  

In this study, the geochemical properties of heavy metal-contaminated soils from a Korean military shooting range were analyzed. The chemical behavior of heavy metals was determined by analyzing the soil pH, heavy metal concentration, mineral composition, and Pb isotopes. In total, 24 soil samples were collected from a Korean military shooting range. The soil samples consist of quartz, albite, microcline, muscovite/illite, kaolinite, chlorite, and calcite. Lead minerals, such as hydrocerussite and anglesite, which are indicative of a transformation into secondary mineral phases, were not observed. All soils were strongly contaminated with Pb with minor concentrations of Cu, Ni, Cd, and Zn. Arsenic was rarely detected. The obtained results are indicated that the soils from the shooting range are contaminated with heavy metals and have evidences of different degree of anthropogenic Pb sources. This study is crucial for the evaluation of heavy metal-contaminated soils in shooting ranges and their environmental effect as well as for the establishment of management strategies for the mitigation of environmental risks.


2021 ◽  
Author(s):  
Concepcion Pla ◽  
Javier Valdes-Abellan ◽  
Miguel Angel Pardo ◽  
Maria Jose Moya-Llamas ◽  
David Benavente

<p>The impervious nature of urban areas is mostly responsible for urban flooding, runoff water pollution and the interception of groundwater recharge. Green infrastructure and sustainable urban drainage systems combine natural and artificial measures to mitigate the abovementioned problems, improving stormwater management and simultaneously increasing the environmental values of urban areas. The actual rate of urban growth in many urban areas requires the enhancement and optimization of stormwater management infrastructures to integrate the territorial development with the natural processes. Regarding the quality of runoff stormwater, heavy metals are critical for their impact on human health and ecological systems, even more if we consider the cumulative effect that they produce on biota. Thus, innovative stormwater management approaches must consider new solutions to deal with heavy metal pollution problems caused by runoff. In this study, we propose the employment of Arlita<sup>®</sup> and Filtralite<sup>®</sup>, two kind of lightweight aggregates obtained from expanded clays, to remove heavy metal concentration from runoff stormwater. Laboratory experiments were developed to evaluate the removal rate of different heavy metals existent in runoff stormwater. The lightweight aggregates acted as filter materials in column experiments to quantify their removal capacity. In addition, batch tests were also developed to evaluate the exhaustive capacity of the materials. Results from the study confirmed the efficiency of the selected lightweight aggregates to reduce the heavy metals concentration by up to 90% in urban stormwater runoff.</p>


2014 ◽  
Vol 4 (1) ◽  
pp. 193 ◽  
Author(s):  
Gideon Ramtahal ◽  
Ivan Chang Yen ◽  
Isaac Bekele ◽  
Frances Bekele ◽  
Lawrence Wilson ◽  
...  

<p>The determination of heavy metals in cocoa beans and chocolates is of great importance, due to increasingly stringent regulations being implemented by international legislative bodies and chocolate manufacturers, to protect the health of their consumers. While various techniques exist for heavy metal analyses in cocoa, this study developed a cost-effective, accurate and precise method capable of processing up to 120 samples per batch for the determination of cadmium, copper, nickel and zinc. For sample extractions, a normal laboratory hot plate and locally fabricated high-capacity digestion blocks were used, instead of dedicated block digestion or microwave digestion systems. In addition, only concentrated nitric acid was used, instead of mixed reagents used in standardized methods, for metal extractions from samples, with a sample: extractant ratio of 0.5 g : 10 mL, digestion at 130 ºC, followed by filtration and analysis by flame atomic absorption spectrophotometry. The method was validated with Certified Reference Materials, with heavy metal recoveries generally &gt;95%. Additionally, an in-house quality control sample of ground cocoa nib analyzed together with the Certified Reference Materials was used to monitor the consistency of analyses of heavy metals in cocoa bean samples.</p>


Sign in / Sign up

Export Citation Format

Share Document