scholarly journals Kinetics of Adsorption Competition of Pb-Cu and Pb-Methylene Blue in Aqueous Solution using Silica Gels from Coal Fly Ash

Author(s):  
Yudi Aris Sulistiyo ◽  
◽  
Vivi Ruthmianingsih ◽  
Inayatul Mukarromah ◽  
Tanti Haryati ◽  
...  

The present study investigates the removal of Pb2+ using silica gel (SG) in the presence of the Cu2+ (Pb-Cu) and methylene blue (Pb-MB) ion competitor. These pollutants are toxic and harmful to the ecosystem. The presence of the multicomponent pollutants causes more complications to remove from the water system. The adsorptions were examined in a batch system under certain experimental conditions (pH solution system and contact time). Meanwhile, the FTIR spectrophotometer determines the differences adsorption interaction in silica functional groups before and after adsorption. The results showed that the silanol group of silica gel acted as an adsorption site. In the single systems, the adsorption capacity of silica gel follows the order MB > Cu2+ > Pb2+ of around 84.03; 64.81; and 56.88 mg.L−1, respectively. The kinetic adsorptions of both single and binary systems were best fitted to pseudo-second-order models. In the binary solution systems, both adsorption capacity and adsorption rate of each component decreased compared to the single system. The results indicated that the cationic competitors influenced the Pb2+ adsorption, or vice versa, depending on the amount of charge and adsorption affinity.

2019 ◽  
Vol 79 (8) ◽  
pp. 1561-1570
Author(s):  
Wei Chen ◽  
Fengting Chen ◽  
Bin Ji ◽  
Lin Zhu ◽  
Hongjiao Song

Abstract The adsorption behavior and the underlying mechanism of methylene blue (MB) sorption on biochars prepared from different feedstocks at 500 °C were evaluated. The biochar feedstocks included Magnolia grandiflora Linn. leaves biochar (MBC), pomelo (Citrus grandis) peel biochar (PBC) and badam shell biochar (BBC). The results of characterizing and analyzing the samples showed that different biochars had different effects on the adsorption of MB. It could be found that MBC had the best adsorption effect on MB due to its largest average pore diameter of 5.55 nm determined by Brunauer-Emmett-Teller analysis. Under the optimal conditions, the maximum adsorption capacities of BBC, PBC and MBC were 29.7, 85.15 and 99.3 mg/g, respectively. The results showed that the amount of adsorption was affected by the pH value. The maximum adsorption capacity of MBC was 46.99 mg/g when it was at pH of 3, whereas for the same experimental conditions the maximum adsorption capacity of BBC and PBC was 25.29 mg/g at pH of 11 and 36.08 mg/g at pH of 7, respectively. Therefore, MBC was found to be a most efficient low-cost adsorbentl for dye wastewater treatment compared with BBC and PBC, and it had the best removal effect under acidic conditions.


2011 ◽  
Vol 194-196 ◽  
pp. 751-754
Author(s):  
Dong Zhang ◽  
Yan Cheng

A new adsorption agent, nanosized strontium titanate immobilized on the silica gel G (GSTO) was prepared, and it was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The ability of the new adsorption to remove heavy metal Pb, Cd, Zn, Cu, Ni and Mn from water samples was assessed. The research results displayed that adsorbent has the highest adsorption capacity for Pb, Cd, Zn, Cu, Ni and Mn in ions mixture system. Optimal experimental conditions including pH and contact time have been established. Desorption studies were carried out successfully with diluted HNO3 solutions. Thus, nano-strontium titanate immobilized on the silica gel G is favorable and useful for the removal of these heavy metal ions, and the high adsorption capacity makes it a good promising candidate material for Pb, Cd, Zn, Cu, Ni and Mn removal.


2010 ◽  
Vol 5 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Nuryono Nuryono ◽  
Narsito Narsito

In this research, synthesis and characterization of silica gel from sodium silicate through sol-gel process using H2SO4, HCl, and citric acid have been investigated. Synthesis was carried out by mixing and stirring  20 mL of H2SO4, HCl or citric acid  at certain concentration with 50 mL of sodium silicate solution (Na2O 0.17 M and SiO2 0.61 M) for one hour and let to form gel.  The gel was washed with distillated water, and dried in an oven at 100 oC. Characterization of silica gel was carried out by determination of acidity, water adsorption capacity, and water content. Identification of functional group and structure were identified using x-ray diffractometer (XRD) and infrared (IR) spectrophotometer, respectively.  Results showed that at a range of investigated concentration (0.6 - 3.0 M) the increase of concentration, formation of gel with H2SO4 tended to be faster, but with HCl and citric acid to be slower. The increase of acid concentration caused water content, water adsorption capacity, and acidity of the silica gel resulted with HCl and citric acid tended to be increased, increased, and increased, but with H2SO4 to be decreased, increased, and decreased, respectively. Based on the IR spectra and XRD data, it could concluded that the synthetic silica gels contained silanol (Si-OH) and siloxane (Si-O-Si) and were amorphous, showing similar pattern to kieselgel G 60 produced by Merck.   Keywords: silica gel, adsorption capacity, sodium silicate, acidity


Author(s):  
Yudi Aris Sulistiyo ◽  
Nida Andriana ◽  
Bambang Piluharto ◽  
Zulfikar Zulfikar

A lot of dye pollutants were released in the aquatic environment as waste from industrial coloring process. This research aimed to study silica gels (SG) as a potential adsorbent to remove the dyes. The SG can be synthesized from coal fly ash (FA), which is industrial solid waste rarely utilized, using the sol-gel method. Its properties were then characterized by FTIR, XRD, SEM, and isothermal ads-des N2. As a result, FTIR spectra and XRD diffractogram exhibited the successfully SG synthesized from FA with the amorphous structure. The image analysis using SEM demonstrated that SG particles are spherical. The isotherm type, based on isotherm ads-des N2, is type II without hysteresis loop which represents the nonporous material SG with the surface area and pore diameter of 25.977 m2/g and 1.52 nm, respectively. The adsorption capacity performance of SG to remove methylene blue (MB) as a basic dye is 62.70 % which is higher than FA, following Langmuir isotherm adsorption model. The kinetics of adsorption rate of SG are based on the pseudo second order models accelerated by 3.37 times faster than FA. Copyright © 2017 BCREC Group. All rights reservedReceived: 13rd November 2016; Revised: 18th February 2017; Accepted: 19th February 2017How to Cite: Sulistiyo, Y.A., Andriana, N., Piluharto, B., Zulfikar, Z. (2017). Silica Gels from Coal Fly Ash as Methylene Blue Adsorbent: Isotherm and Kinetic Studies.  Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 263-272 (doi:10.9767/bcrec.12.2.766.263-272)Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.766.263-272 


Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


2020 ◽  
Vol 5 (3) ◽  
pp. 221
Author(s):  
Muhammad Azam ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variation of activation temperature of activated carbon from sugar palm bunches of chemically activatied with the activation agent of potassium silicate (K2SiO3) on the adsorption capacity of iodine and methylene blue. Activated carbon from bunches of sugar palmacquired in four steps: preparationsteps, carbonizationstepsusing the pyrolysis reactor with temperature of 300 oC - 400 oC for 8 hours and chemical activation using of potassium silicate (K2SiO3) activator in weight ratio of 2: 1 and physical activation using the electric furnace for 30 minutes with temperature variation of600 oC, 650 oC, 700 oC, 750 oC and 800 oC. The iodine and methyleneblue adsorption testedby Titrimetric method and Spectrophotometry methodrespectively. The results of the adsorption of iodine and methylene blue activated carbon from sugar palm bunches increased from 240.55 mg/g and 63.14 mg/g at a temperature of 600 oC to achieve the highest adsorption capacity of 325.80 mg/g and 73.59 mg/g at temperature of 700 oC and decreased by 257.54 mg/g and 52.03 mg/g at a temperature of 800 oCrespectively.However, it does not meet to Indonesia standard (Standard Nasional Indonesia/SNI), which is 750 mg/g and 120 mg/g respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shella Permatasari Santoso ◽  
Vania Bundjaja ◽  
Artik Elisa Angkawijaya ◽  
Chintya Gunarto ◽  
Alchris Woo Go ◽  
...  

AbstractNitrogen-grafting through the addition of glycine (Gly) was performed on a metal- phenolic network (MPN) of copper (Cu2+) and gallic acid (GA) to increase its adsorption capacity. Herein, we reported a one-step synthesis method of MPN, which was developed according to the metal–ligand complexation principle. The nitrogen grafted CuGA (Ng-CuGA) MPN was obtained by reacting Cu2+, GA, and Gly in an aqueous solution at a molar ratio of 1:1:1 and a pH of 8. Several physicochemical measurements, such as Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), and thermal gravimetry analysis (TGA), were done on Ng-CuGA to elucidate its characteristics. The analysis revealed that the Ng-CuGA has non-uniform spherical shaped morphology with a pore volume of 0.56 cc/g, a pore size of 23.25 nm, and thermal stability up to 205 °C. The applicational potential of the Ng-CuGA was determined based on its adsorption capacity against methylene blue (MB). The Ng-CuGA was able to adsorb 190.81 mg MB per g adsorbent at a pH of 6 and temperature of 30 °C, which is 1.53 times higher than the non-grafted CuGA. Detailed assessment of Ng-CuGA adsorption properties revealed their pH- and temperature-dependent nature. The adsorption capacity and affinity were found to decrease at a higher temperature, demonstrating the exothermic adsorption behavior.


2021 ◽  
Vol 11 (15) ◽  
pp. 6808
Author(s):  
Gengbiao Chen ◽  
Zhiwen Liu

A colloidal damper (CD) can dissipate a significant amount of vibrations and impact energy owing to the interface power that is generated when it is used. It is of great practical significance to study the influence of the nanochannel structure of hydrophobic silica gel in the CD damping medium on the running speed of the CD. The fractal theory was applied to observe the characteristics of the micropore structure of the hydrophobic silica gel by scanning electron microscopy (SEM), the primary particles were selected to carry out fractal analysis, and the two-dimensional fractal dimension of the pore area and the tortuous fractal dimension of the hydrophobic silica gel pore structure were calculated. The fractal percolation model of water in hydrophobic silica nanochannels based on the slip theory could thus be obtained. This model revealed the relationship between the micropore structure parameters of the silica gel and the running speed of the CD. The CD running speed increases with the addition of grafted molecules and the reduction in pore size of the silica gel particles. Continuous loading velocity testing of the CD loaded with hydrophobic silica gels with different pore structures was conducted. By comparing the experimental results with the calculation results of the fractal percolation model, it was determined that the fractal percolation model can better characterize the change trend of the CD running velocity for the first loading, but the fractal dimension was changed from the second loading, caused by the small amount of water retained in the nanochannel, leading to the failure of fractal characterization.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4066
Author(s):  
Xianyuan Fan ◽  
Hong Liu ◽  
Emmanuella Anang ◽  
Dajun Ren

The adsorption capacity of synthetic NaX zeolite for Pb2+, Cd2+, Cu2+ and Zn2+ in single and multi-component systems were investigated. The effects of electronegativity and hydration energy on the selective adsorption, as well as potential selective adsorption mechanism of the NaX zeolite for Pb2+, Cd2+, Cu2+ and Zn2+ were also discussed. The maximum adsorption capacity order of the heavy metals in the single system was Pb2+ > Cd2+ > Cu2+ > Zn2+, and this could be related to their hydration energy and electronegativity. The values of the separation factors (α) and affinity constant (KEL) in different binary systems indicated that Pb2+ was preferentially adsorbed, and Zn2+ presented the lowest affinity for NaX zeolite. The selective adsorption capacities of the metals were in the order, Pb2+ > Cd2+ ≈ Cu2+ > Zn2+. The trend for the selective adsorption of NaX zeolite in ternary and quaternary systems was consistent with that in the binary systems. Pb2+ and Cu2+ reduced the stability of the Si-O-Al bonds and the double six-membered rings in the NaX framework, due to the high electronegativity of Pb2+ and Cu2+ than that of Al3+. The selective adsorption mechanism of NaX zeolite for the high electronegative metal ions could mainly result from the negatively charged O in the Si-O-Al structure of the NaX zeolite, hence heavy metal ions with high electronegativity display a strong affinity for the electron cloud of the oxygen atoms in the Si-O-Al. This study could evaluate the application and efficiency of zeolite in separating and recovering certain metal ions from industrial wastewater.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4089
Author(s):  
Cristina Modrogan ◽  
Simona Cǎprǎrescu ◽  
Annette Madelene Dǎncilǎ ◽  
Oanamari Daniela Orbuleț ◽  
Eugeniu Vasile ◽  
...  

Magnesium–aluminum (Mg-Al) and magnesium–aluminum–nickel (Mg-Al-Ni) layered double hydroxides (LDHs) were synthesized by the co-precipitation method. The adsorption process of Mn2+ from synthetic wastewater was investigated. Formation of the layered double hydroxides and adsorption of Mn2+ on both Mg-Al and Mg-Ni-Al LDHs were observed by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometry (EDX) analysis. XRD patterns for prepared LDHs presented sharp and symmetrical peaks. SEM studies revealed that Mg-Al LDH and Mg-Al-Ni LDH exhibit a non-porous structure. EDX analysis showed that the prepared LDHs present uniformly spread elements. The adsorption equilibrium on these LDHs was investigated at different experimental conditions such as: Shaking time, initial Mn2+ concentration, and temperatures (10 and 20 °C). The parameters were controlled and optimized to remove the Mn2+ from synthetic wastewater. Adsorption isotherms of Mn2+ were fitted by Langmuir and Freundlich models. The obtained results indicated that the isotherm data fitted better into the Freundlich model than the Langmuir model. Adsorption capacity of Mn2+ gradually increased with temperature. The Langmuir constant (KL) value of Mg-Al LDH (0.9529 ± 0.007 L/mg) was higher than Mg-Al-Ni LDH (0.1819 ± 0.004 L/mg), at 20 °C. The final adsorption capacity was higher for Mg-Al LDH (91.85 ± 0.087%) in comparison with Mg-Al-Ni LDH (35.97 ± 0.093%), at 20 °C. It was found that the adsorption kinetics is best described by the pseudo-second-order model. The results indicated that LDHs can be considered as a potential material for adsorption of other metallic ions from wastewater.


Sign in / Sign up

Export Citation Format

Share Document