scholarly journals ELABORATION AND RESEARCHES OF HICHLY EFFECTIVE INSTALLATION FOR VIBRO-BLOWING DEHYDRATION OF DISPERSIVE WASTE OF FOOD PRODUCTIONS

Author(s):  
Ivan Sevostyanov ◽  
Yaroslav Ivanchuck ◽  
Svetlana Kravets

There are schemes of equipment for dehydration of damp dispersive waste of food productions (spirit grain, beer pallets, beet pulp, coffee and barley slag) analyzed in this article. These wastes at the majority of food enterprises of Ukraine are poured out onto the ground and that leads to environment pollution. However, in case of dehydration of these wastes to humidity 20 – 25%, they can be used as valuable additions to agricultural forages or as high-energy fuels. Thus, the problems of waste utilization and protection of nature from pollutions are resolved simultaneously. Besides, the enterprise gets a profit from the sales of forage additions or fuel. The known equipment for mechanical dehydration, for example, the screw-presses and the decanter centrifuges, provides the waste final humidity no less 74 – 76%, therefore waste demand of an additional drying after the dehydration at this equipment. That brings to a significant increase of energy expenses. An application of the vibro-blowing dehydration at the installations with the hydraulic pulse drive provides waste final humidity 20 – 25%, but these installations are complex by design, have big dimensions and high cost. A drying in pulverizing or in vacuum dryers is most power-consuming dehydration method (expenses of energy - 740 ÷ 2248 kW h/ ton of dehydrated waste). Equipment for the chemical and biological dehydration is the large multiple-unit complexes with low specific productivity. Therefore, article authors offer a scheme of the installation with the combined unbalanced and hydraulic drive that has a relatively simple design, compact dimensions, high reliability and at the same time, in correspondence with the authors’ estimation, will provide necessary, above indicated humidity. Also equations for determination of the main working parameter – the pressure in the press-form of the proposed installation are presented in the article.

2020 ◽  
Vol 12 (3) ◽  
pp. 454-460
Author(s):  
Yuri KLYKOV ◽  
◽  
Marina KHUDOYAN ◽  
Georgy KIBIZOV ◽  
◽  
...  

Introduction. Currently used grinding machines, among which drum mills are the most widely used, have a low efficiency, are bulky, are characterized by low specific productivity, significant consumption of steel for grinding bodies and lining, high noise level, and high energy consumption of the grinding process. The most promising devices of a new type that can effectively perform grinding operations at high technological rates are centrifugal mills. The centrifugal mill developed at SKGMI operates on the principle of self-grinding of pieces and particles of crushed mineral raw materials, when they collide and RUB in a mobile toroidal flow formed when the material moves between a rotating Cup-shaped rotor, a fixed body and the overlying layers of the crushed material. Grinding occurs due to the appearance of a gradient of particle velocities over the working body, due to their impact and, to a greater extent, abrasion. The tests of these mills for grinding various materials have shown high efficiency in operation, but until now, the issues of determining the physical and mechanical properties of the crushed material based on the establishment of the particle opening mechanism remain unresolved. The purpose of the tests. Determination of the physical and mechanical properties of the crushed material in a centrifugal mill based on the establishment of the particle opening mechanism. Test procedure. To solve this problem, a vertical centrifugal mill MC-600 with a rotor diameter of 600 mm was used. Tests of the centrifugal mill were carried out according to the following method. The speed of rotation of the rotor was 4.8 and 8.4 s-1, the height of the material column above the rotor was at the level of 250 and 350 mm; 6 radial ribs were installed in the rotor cavity of the mill. The time of each test was 4 hours. The tests were repeated 3–5 times for each mode of operation of the mill. Quartz was used as a reference material for determining the relative pulverizability coefficient. The research was carried out in the production conditions of the Izhevsk machinebuilding plant during the regeneration of spent molding quartz mixtures. Pieces of a liquid-glass mixture based on quartz sand with strength of 1.3 MPa and 4.25 MPa were used as the crushed material. The crushed material was dispersed according to the standard method for each hour of operation of the mill. Samples were taken in the size class -0.200 + 0.074 mm for their fractional analysis by size. Test result. 1. It was Found that the maximum productivity of a centrifugal mill when grinding pieces of material with a strength of 1.3 MPa was achieved with a loading weight of 90–100 kg, and with a strength of 4.25 MPa – 100–110 kg, which indicates the need to create an increased normal pressure of the layers of crushed material located above the mill rotor. It was found that the maximum productivity of a centrifugal mill when grinding pieces of material with a strength of 1.3 MPa and a rotor rotation frequency of 8.4 s-1 was 13.16 t/h, and when grinding pieces of material with a strength of 4.25 MPa – 10.0 t/h. 2. The Dependence of power consumption on the weight of the mill load and the rotor speed increases when the load weight is more than 100 kg. 3. The Highest fraction content of class -0.4 +0.16 mm is 72.14 %, and the content of class -0.074 mm is 3.9 %, i.e. there is no re-grinding of the source material. 4. The specific productivity of the centrifugal mill for the newly formed calculated size classes -0.074 mm and -0.200 mm was 1.28 t/h and 13.0 t/h, respectively. 5. Microscopic study of anshlifov showed that quartz grains in the crushed material mostly have a rounded shape, on average 90–95 % of the grains. In the initial material, about 90% of quartz joints with a binder, and in the crushed material, the number of joints does not exceed 3–5%. Thus, the degree of expansion of quartz reaches to 0.87. Conclusions. The paper presents the results of studies of a centrifugal mill in the conditions of the Izhevsk machinebuilding plant when grinding quartz-containing products. The physical and mechanical properties of the crushed material that significantly affect the efficiency of grinding are determined. The mechanism of the disclosure particles of quartz, which is primarily the mineral content of many ores and defined particle size obtained by grinding. At the same time, it was found that a large yield of thin classes significantly reduces the efficiency of further technology.


Author(s):  
L. -M. Peng ◽  
M. J. Whelan

In recent years there has been a trend in the structure determination of reconstructed surfaces to use high energy electron diffraction techniques, and to employ a kinematic approximation in analyzing the intensities of surface superlattice reflections. Experimentally this is motivated by the great success of the determination of the dimer adatom stacking fault (DAS) structure of the Si(111) 7 × 7 reconstructed surface.While in the case of transmission electron diffraction (TED) the validity of the kinematic approximation has been examined by using multislice calculations for Si and certain incident beam directions, far less has been done in the reflection high energy electron diffraction (RHEED) case. In this paper we aim to provide a thorough Bloch wave analysis of the various diffraction processes involved, and to set criteria on the validity for the kinematic analysis of the intensities of the surface superlattice reflections.The validity of the kinematic analysis, being common to both the TED and RHEED case, relies primarily on two underlying observations, namely (l)the surface superlattice scattering in the selvedge is kinematically dominating, and (2)the superlattice diffracted beams are uncoupled from the fundamental diffracted beams within the bulk.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 41
Author(s):  
Hanae El Fakiri ◽  
Lahoucine Ouhsaine ◽  
Abdelmajid El Bouardi

The thermal dynamic behavior of buildings represents an important aspect of the energy efficiency and thermal comfort of the indoor environment. For this, phase change material (PCM) wallboards integrated into building envelopes play an important role in stabilizing the temperature of the human comfort condition. This article provides an assessment of the thermal behavior of a “bi-zone” building cell, which was built based on high-energy performance (HEP) standards and heated by a solar water heater system through a hydronic circuit. The current study is based on studying the dynamic thermal behavior, with and without implantation of PCMs on envelope structure, using a simplified modeling approach. The evolution of the average air temperature was first evaluated as a major indicator of thermal comfort. Then, an evaluation of the thermal behavior’s dynamic profile was carried out in this study, which allowed for the determination of the PCM rate anticipation in the thermal comfort of the building cell.


1990 ◽  
Vol 68 (6) ◽  
pp. 2719-2722 ◽  
Author(s):  
A. Matsumuro ◽  
M. Kobayashi ◽  
T. Kikegawa ◽  
M. Senoo

2021 ◽  
pp. 50-60
Author(s):  
A.A. Antsifirov ◽  
V.A. Krivoshein

The research presented in the article is devoted to the selection of the electric motor of the hydraulic press drive with a nominal force of 5MN. The article presents the main characteristics and the description of the press operation using the means of mechanization of the technological process of pressure treatment. Using the Deform-3D software package, the process of stamping the crosspiece of the ZIL-130 cardan shaft was simulated. Based on the presented hydraulic scheme of the press, its topological model was formed in the PA-9 software package. The deformation force obtained in the course of modeling the technological process of stamping was used in the topological model of the press. Using a tabular cyclogram, the sequence of actuation of the end switches and hydraulic distributors during the stamping process is shown. In the article, two variants of engine operation were analyzed. Based on the results of the conducted research, it is necessary to focus on the second version of the 55 kW engine, the operation of which will provide the required characteristics of the hydraulic drive of the press, which in turn will allow for technological stamping operations. The simulation tools allow providing estimated information when selecting the necessary tools to ensure the optimal characteristics of hydraulic press drives. The article considered the variation of electric motors that differ from each other in nominal characteristics, with constant characteristics of the pump. For more accurate estimates of energy savings during the operation of the hydraulic drive, it is necessary to vary the characteristics of the pump in the simulation, and the best option is to form an experiment planning matrix when combining the characteristics of the electric motor and the hydraulic pump. This approach ultimately allows forming a function for which one can select a hydraulic drive from existing brands of electric motors and hydraulic pumps for presses of the corresponding range of nominal force.


2021 ◽  
pp. 57-61
Author(s):  

A method for the development an effective technology for casting of billets of insert cutters with specified properties from high-speed steels for milling cutters of rotors of mining combines is proposed, including the identification of a set of goals, the choice of priority technology and the determination of the specified characteristics of the technology. An alternative method of expert assessment is proposed, which ensures high reliability of the results. Keywords: innovative technology, casting, design, expert assessment method. [email protected], [email protected]


Sign in / Sign up

Export Citation Format

Share Document