scholarly journals Knockdown of Urothelial Carcinoma-Associated 1 Suppressed Cell Growth and Migration Through Regulating miR-301a and CXCR4 in Osteosarcoma MHCC97 Cells

Author(s):  
Genglong Zhu ◽  
Xialei Liu ◽  
Yonghui Su ◽  
Fangen Kong ◽  
Xiaopeng Hong ◽  
...  

Liver cancer is one of the most common malignancies in the world and a leading cause of cancer-related mortality. Accumulating evidence has highlighted the critical role of long noncoding RNAs (lncRNAs) in various cancers. The present study aimed to explore the role of lncRNA urothelial carcinoma-associated 1 (UCA1) in cell growth and migration in MHCC97 cells and its underlying mechanism. First, we assessed the expression of UCA1 in MHCC97 and three other cell lines by RT-qPCR. Then the expression of UCA1, miR-301a, and CXCR4 in MHCC97 cells was altered by transient transfection. The effects of UCA1 and miR-301 on cell viability, migration, invasion, and apoptosis were assessed. The results revealed that UCA1 expression was relatively higher in MHCC97 cells than in MG63, hFOB1.19, and OS-732 cells. Knockdown of UCA1 reduced cell viability, inhibited migration and invasion, and promoted cell apoptosis. However, the effect of UCA1 knockdown on cell growth and migration was blocked by miR-301a overexpression, whose expression was regulated by UCA1. We also found that miR-301a positively regulated CXCR4 expression. CXCR4 inhibition reversed the effect of miR-301a overexpression on cell growth and migration. Moreover, miR-301a activated the Wnt/β-catenin and NF-κB pathways via regulating CXCR4. The present study demonstrated that UCA1 inhibition exerted an antigrowth and antimigration role in MHCC97 cells through regulating miR-301a and CXCR4 expression.

2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


2020 ◽  
Vol 168 (5) ◽  
pp. 547-555
Author(s):  
Jin Dou ◽  
Daoyuan Tu ◽  
Haijian Zhao ◽  
Xiaoyu Zhang

Abstract MiR-301a is as an oncogene involved in the regulation of gastric cancer (GC) progression, but the underlying mechanism is unclear. This study was to explore the lncRNA PCAT18/miR-301a/TP53INP1 axis in regulating the GC cell proliferation and metastasis. In the present study, GC tissues and cell lines were collected for the detection of PCAT18 expression. Herein, we found that PCAT18 is significantly decreases in human GC tissues and five GC cell lines. Overexpression of PCAT18 inhibits cell viability, invasion and migration of GC cells and tumour growth of GC xenograft tumours. PCAT18 negatively regulates the expression level of miR-301a. The interaction between PCAT18 and miR-301a is confirmed by RIP and RNA pull down. MiR-301a mimic increases cell viability and promotes cell migration and invasion and reverses the inhibitory action of PCAT18. TP53INP1 expression is negatively regulated by miR-301a and TP53INP1/miR-301a is involved in GC viability, migration and invasion. The promoting of PCAT18 on TP53INP1 expression is abolished by miR-301a overexpression. In conclusion, lncRNA PCAT18 acts as a tumour suppressor for GC and lncRNA PCAT18, miR-301a and TP53INP1 comprise a signal axis in regulating GC cell proliferation, migration and invasion.


2019 ◽  
Vol 30 (21) ◽  
pp. 2651-2658
Author(s):  
Chan-wool Lee ◽  
Young-Chang Kwon ◽  
Youngbin Lee ◽  
Min-Yoon Park ◽  
Kwang-Min Choe

Wound closure in the Drosophila larval epidermis mainly involves nonproliferative, endocyling epithelial cells. Consequently, it is largely mediated by cell growth and migration. We discovered that both cell growth and migration in Drosophila require the cochaperone-encoding gene cdc37. Larvae lacking cdc37 in the epidermis failed to close wounds, and the cells of the epidermis failed to change cell shape and polarize. Likewise, wound-induced cell growth was significantly reduced, and correlated with a reduction in the size of the cell nucleus. The c-Jun N-terminal kinase (JNK) pathway, which is essential for wound closure, was not typically activated in injured cdc37 knockdown larvae. In addition, JNK, Hep, Mkk4, and Tak1 protein levels were reduced, consistent with previous reports showing that Cdc37 is important for the stability of various client kinases. Protein levels of the integrin β subunit and its wound-induced protein expression were also reduced, reflecting the disruption of JNK activation, which is crucial for expression of integrin β during wound closure. These results are consistent with a role of Cdc37 in maintaining the stability of the JNK pathway kinases, thus mediating cell growth and migration during Drosophila wound healing.


2020 ◽  
Vol 10 (8) ◽  
pp. 1094-1101
Author(s):  
Delin Wu ◽  
Xiaopeng Ma

Background: MicroRNAs (miRNAs) act as a critical role in cancer pathogenesis, while the potential of miR-449b-5p in breast carcinoma remains to be fully inquired. Therefore, we purposed to probe the mechanism governing miR-449b-5p in breast cancer. Methods: Reverse transcription-PCR (RTPCR) was adopted to examine miR-449b-5p expression level in breast carcinoma. The functional experiments were implemented to estimate the role of miR-449b-5p in cell growth and migration. The interplay of miR-449b-5p with FLOT2 was validated with luciferase reporter assay. Results: miR-449b-5p level was markedly lessened in the tissue samples and cell lines of breast carcinoma. Overexpression of miR-449b-5p contributed to suppression of cell growth and migration whereas induced apoptosis in SKBr-3 and MCF-7 cells. Moreover, luciferase reporter experiment suggested that FLOT2 had a negative correlation with miR-449b-5p expression. Functionally, ectopic expression of FLOT2 reversed repressive effects of miR-449b-5p mimic on malignant behaviors of breast carcinoma cells. Conclusion: miR-449b-5p hindered cell proliferation, migration and facilitated cell apoptosis of breast carcinoma through targeting FLOT2. Our findings may offer a potent target for the therapy of breast carcinoma.


2017 ◽  
Vol 43 (2) ◽  
pp. 757-767 ◽  
Author(s):  
Xiaoxue Bai ◽  
Lin Meng ◽  
Huijie Sun ◽  
Zhuo Li ◽  
Xiufang Zhang ◽  
...  

Background/Aims: Lung cancer is one of the most common causes of cancer related deaths worldwide. The role of several microRNAs (miRNAs) including miR-196b in different cancers has already been established. The study was aimed to explore the role of miR-196b in lung cancer and its possible underlying mechanism. Methods: Human lung cancer cell line A549 was transfected with miR-196b mimic, miR-196b inhibitor and corresponding controls. Then cell viability, migration, invasion, and apoptosis of A549 lung cancer cells either with overexpression or with suppression of miR-196b were estimated sequentially. Next, dual luciferase activity assay was performed to clarify whether Runx2 was a direct target of miR-196b. Finally, the expressions of main factors associated with epithelial mesenchymal transition (EMT), PI3K/AKT/GSK3β, Smad, and JNK pathways were detected by western blot. Results: MiR-196b expression was significantly decreased in A549, H1650 and H1299 cell lines compared with in WI-38 and HEL-1 cell lines. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-β induced EMT process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. Finally, miR-196b also mediated its action by inactivation of PI3K/AKT/GSK3β, Smad, and JNK pathways by down-regulation of Runx2. Conclusion: MiR-196b functions as a tumor suppressor that inhibited cell growth and metastasis of lung cancer cells by targeting Runx2. These findings provided further evidences for treatment of lung cancer.


2021 ◽  
Author(s):  
Nina Xue ◽  
Tingting Du ◽  
Fangfang Lai ◽  
Jing Jin ◽  
Ming Ji ◽  
...  

Abstract Extracellular heat shock protein 90α (HSP90α) has been reported to promote cancer cell invasion and migration. However, whether pancreatic cancer (PC) cells expressed membrane-bound or secreted HSP90α and its underlying mechanism for PC progression were still unclear. Our study pointed out that highly invasive Capan2 cells has a higher level of secreted HSP90α, rather than membrane HSP90α, compared with those of less invasive PL45 cells. The conditioned medium of Capan2 cells or recombinant HSP90α protein was able to stimulate the migration and invasion of PL45 or capan2 cells, which could be prevented by a neutralizing anti-HSP90α antibody. Furthermore, secreted HSP90α promoted elements of epithelial-mesenchymal transition (EMT) in PL45 cells, including increases in vimentin and snail expressions, decreases in E-cadherin expression and changes in cell shape towards a mesenchymal phenotype, but these phenomena were reversed by anti-HSP90α antibody in Capan2 cells. In addition, high levels of low-density lipoprotein receptor-related protein 1 (LRP1) mRNA were associated with worsened patient survival in pancreatic adenocarcinoma. LRP1 as a receptor of eHSP90α for its stimulatory role of PC cells EMT and metastasis by activating AKT signaling. Down-regulation of LRP1 could promote chemosensitivity to gemcitabine and doxorubicin, but not to topotecan and paclitaxel in Capan2 cells. Therefore, our study reveals a critical role of secreted HSP90α on EMT events and suggests blocking secreted HSP90α underlies an aspect of metastasis and chemoresistance.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaoxia Huo ◽  
Houmin Zhou ◽  
Tiantian Li

MicroRNAs (miRs) are regulators of the formation and development of hepatocellular carcinoma (HCC). The biological role of miR-4325 in HCC has yet to be determined. This study is aimed at dissecting the role of miR-4325 in HCC and the underlying mechanism. Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-4325 expression in HCC tissue specimens and cells. Cell proliferation, migration, and invasion were assessed by using the MTT assay and Transwell assay, respectively. The miR-4325 target was predicted based on bioinformatics analysis and validated using the dual-luciferase reporter assay. Rescue experiments in the cells were utilized to functionally characterize the downstream molecular targets of miR-4325. We observed that miR-4325 expression levels were significantly reduced in both HCC tissue specimens and cell lines. Meanwhile, a lower miR-4325 level was associated with a poorer prognosis. Gain and loss of function assays revealed that miR-4325 markedly downregulated HCC cell growth, migration, and invasion. Moreover, we identified GATA-binding protein 6 (GATA6) as a miR-4325 target and found that GATA6 was abnormally expressed in HCC. Rescue assays demonstrated that the regulatory function of miR-4325 in HCC was mediated by GATA6. Taken together, miR-4325 suppresses HCC cell growth, migration, and invasion by targeting GATA6, suggesting that miR-4325 may potentially serve as a novel therapeutic target for HCC.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jingyu Wang ◽  
Hao Zhang ◽  
Jie Situ ◽  
Mingzhao Li ◽  
Hua Sun

Abstract Background The large involvement of long non-coding RNAs (LncRNAs) in the biological progression of numerous cancers has been reported. The function of lncRNA KCNQ1OT1 in bladder cancer (BC) remains largely unknown. This study aimed to explore the critical role of KCNQ1OT1 in BC. Materials and methods The qRT-PCR was applied to test the expression of RNAs. Cell proliferation was detected by CCK-8 and colony formation assays. Cell apoptosis was measured by TUNEL and flow cytometry experiments. Wound healing and transwell assays were employed to evaluate cell migration and invasion ability respectively. Western blot assay was used to measure relevant protein expression. Immunofluorescence (IF) staining was used to observe EMT process in BC. Results KCNQ1OT1 was significantly overexpressed in BC tissue and cell lines. KCNQ1OT1 depletion repressed cell proliferation, migration and invasion, whereas encouraged cell apoptosis. KCNQ1OT1 was a negatively/positively correlated with miR-145-5p/PCBP2 in respect with expression. Mechanically, KCNQ1OT1 was sponge of miR-145-5p and up-regulated the expression of PCBP2. MiR-145-5p inhibition and PCBP2 up-regulation could countervail the tumor-inhibitor role of KCNQ1OT1 knockdown in BC. Conclusion KCNQ1OT1 serves as competing endogenous RNA (ceRNA) to up-regulate PCBP2 via sponging miR-145-5p in BC progression.


1988 ◽  
Vol 18 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Andreina Poggi ◽  
Elisa Vicenzi ◽  
Vittoria Cioce ◽  
Åke Wasteson

Sign in / Sign up

Export Citation Format

Share Document