scholarly journals Bioindicators in Air Quality Assessment

2018 ◽  
Vol 69 (11) ◽  
pp. 3238-3240 ◽  
Author(s):  
Andreea Cozea ◽  
Elena Bucur ◽  
Carol Blaziu Lehr ◽  
Luoana Florentina Pascu ◽  
Gheorghita Tanase

The study aims to assess the identification of the specific species of plants for selection of certain plant species and utilization of selected one�s in experimental biomonitoring studies.The purpose of the proposed study was to develop and apply new techniques, methods and methodologies for air quality assessing in the context of climate change and updating of international environmental studys. The novelty of the active biomonitoring method using plants is an innovative research area for the National Research and Development Institute for Industrial Ecology in terms of the use of sentinel species. The first stage research activity was aimed to identify plant species with specific response to certain environmental pollutants, in our case, ozone. By exposing higher plants (from the Solanaceae family) to various environmental conditions, a direct impact measurement of ground-level ozone was considered - as an indicator of environmental pollution (air) - there was a significant difference relationship between soil level ozone variation and foliar necrosis.

Environments ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Peter Brimblecombe ◽  
Yonghang Lai

The COVID-19 pandemic made it critical to limit the spread of the disease by enforcing human isolation, restricting travel and reducing social activities. Dramatic improvements to air quality, especially NO2, have often characterised places under COVID-19 restrictions. Air pollution measurements in Sydney in April 2019 and during the lockdown period in April 2020 show reduced daily averaged NO2 concentrations: 8.52 ± 1.92 and 7.85 ± 2.92 ppb, though not significantly so (p1~0.15) and PM2.5 8.91 ± 4.94 and 7.95 ± 2.64 µg m−3, again a non-significant difference (p1~0.18). Satellite imagery suggests changes that parallel those at ground level, but the column densities averaged over space and time, in false-colour, are more dramatic. Changed human mobility could be traced in increasing times spent at home, assessed from Google Mobility Reports and mirrored in decreased traffic flow on a major road, suggesting compliance with the restrictions. Electricity demand for the State of New South Wales was low under lockdown in early April 2020, but it recovered rapidly. Analysis of the uses of search terms: bushfires, air quality, haze and air pollution using Google Trends showed strong links between bushfires and pollution-related terms. The smoke from bushfires in late 2019 may well have added to the general impression of improved air quality during lockdown, despite only modest changes in the ground level measurements. This gives hints that successful regulation of air quality requires maintaining a delicate balance between our social perceptions and the physical reality.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 62
Author(s):  
Robert Cichowicz ◽  
Maciej Dobrzański

Spatial analysis of the distribution of particulate matter PM10, PM2.5, PM1.0, and hydrogen sulfide (H2S) gas pollution was performed in the area around a university library building. The reasons for the subject matter were reports related to the perceptible odor characteristic of hydrogen sulfide and a general poor assessment of air quality by employees and students. Due to the area of analysis, it was decided to perform measurements at two heights, 10 m and 20 m above ground level, using measuring equipment attached to a DJI Matrice 600 unmanned aerial vehicle (UAV). The aim of the measurements was air quality assessment and investigate the convergence of the theory of air flow around the building with the spatial distribution of air pollutants. Considerable differences of up to 63% were observed in the concentrations of pollutants measured around the building, especially between opposite sides, depending on the direction of the wind. To explain these differences, the theory of aerodynamics was applied to visualize the probable airflow in the direction of the wind. A strong convergence was observed between the aerodynamic model and the spatial distribution of pollutants. This was evidenced by the high concentrations of dust in the areas of strong turbulence at the edges of the building and on the leeward side. The accumulation of pollutants was also clearly noticeable in these locations. A high concentration of H2S was recorded around the library building on the side of the car park. On the other hand, the air turbulence around the building dispersed the gas pollution, causing the concentration of H2S to drop on the leeward side. It was confirmed that in some analyzed areas the permissible concentration of H2S was exceeded.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 975
Author(s):  
Paweł Świsłowski ◽  
Zbigniew Ziembik ◽  
Małgorzata Rajfur

Mosses are one of the best bioindicators in the assessment of atmospheric aerosol pollution by heavy metals. Studies using mosses allow both short- and long-term air quality monitoring. The increasing contamination of the environment (including air) is causing a search for new, cheap and effective methods of monitoring its condition. Once such method is the use of mosses in active biomonitoring. The aim of the study was to assess the atmospheric aerosol pollution with selected heavy metals (Ni, Cu, Zn, Cd, Hg and Pb) from the smoke of fireworks used during New Year’s Eve in the years 2019/2020 and 2020/2021. In studies a biomonitoring moss-bag method with moss Pleurozium schreberi (Willd. ex Brid.) Mitt. genus Pleurozium was used. The research was conducted in the town Prószków (5 km in south direction from Opole, opolskie voivodship, Poland). The moss was exposed 14 days before 31 December (from 17 to 30 of December), on New Year’s Eve (31 December and 1 January) and 2 weeks after the New Year (from 2–15 January). Higher concentrations of analysed elements were determined in samples exposed during New Year’s Eve. Increases in concentrations were demonstrated by analysis of the Relative Accumulation Factor (RAF). The results indicate that the use of fireworks during New Year’s Eve causes an increase in air pollution with heavy metals. In addition, it was shown that the COVID-19 induced restrictions during New Year’s Eve 2020 resulted in a reduction of heavy metal content in moss samples and thus in lower atmospheric aerosol pollution with these analytes. The study confirmed moss usefulness in monitoring of atmospheric aerosol pollution from point sources.


Planta Medica ◽  
2018 ◽  
Vol 85 (04) ◽  
pp. 312-334 ◽  
Author(s):  
Fatai Balogun ◽  
Anofi Ashafa

AbstractSouth Africa contains 9% of the worldʼs higher plants, and despite its rich biodiversity, it has one of the highest prevalence of hypertension in Africa. This review provides information on medicinal plants embraced in South Africa for hypertension management, with the aim of reporting pharmacological information on the indigenous use of these plants as antihypertensives. This review not only focuses on the activity of antihypertensive medicinal plants but also reports some of its phytochemical constituents and other ethnopharmacological and therapeutic properties. Information obtained from scientific and or unpublished databases such as Science Direct, PubMed, SciFinder, JSTOR, Google Scholar, Web of Science, and various books revealed 117 documented antihypertensive plant species from 50 families. Interestingly, Asteraceae topped the list with 16 species, followed by Fabaceae with 8 species; however, only 25% of all plant species have demonstrated antihypertensive effects originating from both in vitro and in vivo studies, lending credence to their folkloric use. Only 11 plant species reportedly possess antihypertensive properties in animal models, with very few species subjected to analytical processes to reveal the identity of their bioactive antihypertensive compounds. In this review, we hope to encourage researchers and global research institutions (universities, agricultural research councils, and medical research councils), particularly those showing an interest in natural products, for the need for concerted efforts to undertake more studies aimed at revealing the untapped potential of these plants. These studies are very important for the development of new pharmaceuticals of natural origin useful for the management of hypertension.


2018 ◽  
Vol 39 (2) ◽  
pp. 196-210 ◽  
Author(s):  
Barny Evans ◽  
Sabbir Sidat

This paper is an investigation into the issues around how we calculate CO2 emissions in the built environment. At present, in Building Regulations and GHG Protocol calculations used for buildings and corporate CO2 emissions calculations, it is standard to use a single number for the CO2 emission factor of each source. This paper considers how energy demand, particularly electricity at different times of the day, season and even year can differ in terms of its CO2 emissions. This paper models three different building types (retail, office and home) using standard software to estimate a profile of energy demand. It then considers how CO2 emissions calculations differ between using the single standard emissions factor and using an hourly emissions factor based on real electrical grid generation over a year. The paper also examines the impact of considering lifetime emissions factors rather than one-year factors using UK government projections. The results show that there is a significant difference to the analysis of benefit in terms of CO2 emissions from different measures – both intra- and inter-year – due to the varying CO2 emissions intensity, even when they deliver the same amount of net energy saving. Other factors not considered in this paper, such as impact on peak generation and air quality, are likely to be important when considering whole-system impacts. In line with this, it is recommended that moves are made to incorporate intra- and inter-year emissions factor changes in methodologies for calculating CO2 emissions. (This is particularly important as demand side response and energy storage, although generally accepted as important in the decarbonisation of the energy system at present will show as an increase in CO2 emissions when using a single number.) Further work quantifying the impact on air quality and peak generation capacity should also be considered. Practical application: This paper aims to help practitioners to understand the performance gap between how systems need to be designed in order to meet regulations compared to how buildings perform in reality – both today and in the future. In particular, it considers the use of ‘real-time’ carbon factors in order to attain long-term CO2 reductions. This methodology enables decision makers to understand the impacts of different energy reduction technologies, considering each of their unique characteristics and usage profiles. If implemented, the result is a simple-to-use dataset which can be embedded into the software packages already available onto the market which mirrors the complexity of the electricity grid that is under-represented through the use of a static carbon figure.


1970 ◽  
Vol 17 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Anita Pokharel ◽  
Madhu Chhetri ◽  
Chiranjibi P Upadhyaya

Limited information is available on the species composition, above ground biomass and its relations to grazing in a trans-Himalayan rangeland. Its assessment is essential for long term conservation and management. In the present study, we compared species composition, phenology, diversity index and biomass between controlled (without grazing) and open (free grazing) plots to assess the effects of grazing in the selected experimental sites of Upper Mustang during July and November 2005. Species encountered were classified as high, medium, low and non palatable and in three life form categories-grasses, shrubs and forbs. The experimental sites are dominated by forbs (80%) followed by grasses (15%) and shrubs (5%). Disturbance caused by grazing affects the phenological characteristics of the plant community. Result also reveals that species diversity, maximum possible diversity, evenness and species richness was higher in the grazed plots during July and November. A comparison of the aboveground biomass in July showed that mean percentage biomass of high, medium and low palatable species is higher in ungrazed plots. In November, the percentage biomass of only medium palatable species was higher in ungrazed plots and rest of the category is higher in grazed plots. Significant difference in July, a peak growing seasons for most of the plant species in the region reveals that the pasture has impact of livestock grazing. Keywords: Biomass, diversity, grazing effect, rangeland, species Banko Janakari: A journal of forestry information for Nepal Vol.17(1) 2007 pp.25-31


2020 ◽  
Vol 237 ◽  
pp. 03012
Author(s):  
Christoph Senff ◽  
Andrew Langford ◽  
Raul Alvarez ◽  
Tim Bonin ◽  
Alan Brewer ◽  
...  

Recently, two air quality campaigns were conducted in the southwestern United States to study the impact of transported ozone, stratospheric intrusions, and fire emissions on ground-level ozone concentrations. The California Baseline Ozone Transport Study (CABOTS) took place in May – August 2016 covering the central California coast and San Joaquin Valley, and the Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS) was conducted in the greater Las Vegas, Nevada area in May – June 2017. During these studies, nearly 1000 hours of ozone and aerosol profile data were collected with the NOAA TOPAZ lidar. A Doppler wind lidar and a radar wind profiler provided continuous observations of atmospheric turbulence, horizontal winds, and mixed layer height. These measurements allowed us to directly observe the degree to which ozone transport layers aloft were entrained into the boundary layer and to quantify the resulting impact on surface ozone levels. Mixed layer heights in the San Joaquin Valley during CABOTS were generally below 1 km above ground level (AGL), while boundary layer heights in Las Vegas during FAST-LVOS routinely exceeded 3 km AGL and occasionally reached up to 4.5 km AGL. Consequently, boundary layer entrainment was more often observed during FAST-LVOS, while most elevated ozone layers passed untapped over the San Joaquin Valley during CABOTS.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2119 ◽  
Author(s):  
Ying Li ◽  
Yung-Ho Chiu ◽  
Liang Lu

Rapid economic development has resulted in a significant increase in energy consumption and pollution such as carbon dioxide (CO2), particulate matter (PM2.5), particulate matter 10 (PM10), SO2, and NO2 emissions, which can cause cardiovascular and respiratory diseases. Therefore, to ensure a sustainable future, it is essential to improve economic efficiency and reduce emissions. Using a Meta-frontier Non-radial Directional Distance Function model, this study took energy consumption, the labor force, and fixed asset investments as the inputs, Gross domestic product (GDP) as the desirable output, and CO2 and the Air Quality Index (AQI) scores as the undesirable outputs to assess energy efficiency and air pollutant index efficiency scores in China from 2013–2016 and to identify the areas in which improvements was necessary. It was found that there was a large gap between the western and eastern cities in China. A comparison of the CO2 and AQI in 31 Chinese cities showed a significant difference in the CO2 emissions and AQI efficiency scores, with the lower scoring cities being mainly concentrated in China’s western region. It was therefore concluded that China needs to pay greater attention to the differences in the economic levels, stages of social development, and energy structures in the western cities when developing appropriately focused improvement plans.


Plants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 93 ◽  
Author(s):  
Most Naznin ◽  
Mark Lefsrud ◽  
Valerie Gravel ◽  
Md Azad

The aim of this study was to investigate the different combinations of red (R) and blue (B) light emitting diode (LEDs’) lighting effects on growth, pigment content, and antioxidant capacity in lettuce, spinach, kale, basil, and pepper in a growth chamber. The growth chamber was equipped with R and B light percentages based on total light intensity: 83% R + 17% B; 91% R + 9% B; 95% R + 5% B; and control was 100% R. The photosynthetic photon flux density (PPFD), photoperiod, temperature, and relative humidity of the growth chamber were maintained at 200 ± 5 μmol m−2 s−1, 16 h, 25/21 ± 2.5 °C, and 65 ± 5%, respectively. It is observed that the plant height of lettuce, kale, and pepper was significantly increased under 100% R light, whereas the plant height of spinach and basil did not show any significant difference. The total leaf number of basil and pepper was significantly increased under the treatment of 95% R + 5% B light, while no significant difference was observed for other plant species in the same treatment. Overall, the fresh and dry mass of the studied plants was increased under 91% R + 9% B and 95% R + 5% B light treatment. The significantly higher flower and fruit numbers of pepper were observed under the 95% R + 5% B treatment. The chlorophyll a, chlorophyll b, and total chlorophyll content of lettuce, spinach, basil, and pepper was significantly increased under the 91% R + 9% B treatment while the chlorophyll content of kale was increased under the 95% R + 5% B light treatment. The total carotenoid content of lettuce and spinach was higher in the 91% R + 9% B treatment whereas the carotenoid content of kale, basil, and pepper was increased under the 83% R + 17% B treatment. The antioxidant capacity of the lettuce, spinach, and kale was increased under the 83% R + 17% B treatment while basil and pepper were increased under the 91% R + 9% B treatment. This result indicates that the addition of B light is essential with R light to enhance growth, pigment content, and antioxidant capacity of the vegetable plant in a controlled environment. Moreover, the percentage of B with R light is plant species dependent.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1474
Author(s):  
Dhanushka Rathnayake ◽  
Hong-Seok Mun ◽  
Muhammad Ammar Dilawar ◽  
Il-Byung Chung ◽  
Kwang-Woo Park ◽  
...  

The present study examined the cooling effects of an air heat pump (AHP) system. An AHP system was installed in a pig house to compare the effects with a traditional cooling system on the growth performance, noxious gas emission, housing environment and consumption of electricity. During the 19-week experimental trial, the internal temperature in the AHP cooling system-connected pig house was significantly decreased (p < 0.05) than the conventional house. Similarly, the temperature–humidity index (THI) was significantly reduced (p < 0.05) in the growing and late finishing period. The carbon dioxide (CO2) and electricity consumption were also reduced significantly in the AHP cooling system relative to the control. The concentration of ammonia (NH3) during the weaning and finishing phase and the concentration of hydrogen sulfide (H2S) during all periods were lower in the AHP-installed pig house (p < 0.05). From 0–19 weeks, there was no significant difference was observed (p > 0.05) in terms of the growth performance of pigs in both houses. These results show that the AHP cooling system can be implemented as an environmentally friendly renewable energy source in swine farms for sustainable pig production and better air quality without adversely affecting productivity parameters.


Sign in / Sign up

Export Citation Format

Share Document