Potential Use of Galium verum Essential Oil for Antibacterial Properties in Gelatin Based Hydrogels Prepared by Microwave Irradiation Technique

2018 ◽  
Vol 69 (3) ◽  
pp. 575-580 ◽  
Author(s):  
Timea Gherman ◽  
Violeta Popescu ◽  
Rahela Carpa ◽  
Maria Rapa ◽  
Georgiana Luminita Gavril ◽  
...  

Galium verum essential oil (EO) loaded gelatin hydrogel was prepared by microwave-assisted polymerization method. FT-IR analysis indicated no chemical interaction between the hydrogel matrix and EO. Good swelling behavior, increased thermo- and mechanical- properties was attributed to the synergistic effects of the secondary structure of gelatin after gelation and intermolecular hydrogen-bonding interactions between the hydrogel matrix and EO ingredient�s. Antibacterial activity was investigated by the agar diffusion method.

2018 ◽  
Vol 69 (2) ◽  
pp. 410-414
Author(s):  
Timea Gherman ◽  
Violeta Popescu ◽  
Rahela Carpa ◽  
Georgiana Luminita Gavril ◽  
Maria Rapa ◽  
...  

Salvia officinalis essential oil loaded gelatin hydrogels with improved antibacterial activity and enhanced stability was prepared by microwave-assisted polymerization method. FT-IR spectra indicated no chemical interaction between the hydrogel matrix and the essential oil functional groups. According to the swelling studies, enhanced stability in all pH media was obtained. Studying two kinetic models: Fickian transport and Schott second order kinetic model, it was demonstrated that the swelling process of the prepared hydrogels occurs after a second order kinetics. Antibacterial activity, investigated by the agar diffusion method, regarding S. aureus and E. coli is comparable to that of silver nanoparticles and twice more efficient compared to cinnamon essential oil.


2020 ◽  
Vol 42 (3) ◽  
Author(s):  
Hoang Thi Binh ◽  
Tran Thi Bao Tram ◽  
Do Ngoc Dai ◽  
Vuong Thuy Tien ◽  
Le Minh Tam ◽  
...  

In the present study, chemical composition and antibacterial properties of essential oil obtained from the aerial parts of the Melicope pteleifolia (Champ. ex Benth.) T.G Hartley in Dalat were evaluated. Essential oil was isolated through hydro-distillation. Twenty-nine constituents comprising 100% of the essential oil were characterized by gas chromatography/mass spectrometry (GC-MS) techniques. The major compounds in the essential oil were (+)-Sabinene (34.73%), Cis-α-bergamotene (13.15%), Z-α-trans-bergamotol (5.28%), β-mycrene (4.98%), and 1,3,6-octatriene, 3,7-dimethyl-(4.71%). Antibacterial activities of Melicope pteleifolia essential oil were investigated against Gram-positive and-negative bacteria. Results showed significant activities against Streptococcus pyogenes and Escherichia coli using an agar well diffusion method. The application of this essential oil in preventing and eliminating bacteria could be useful in fields as medicine and cosmetics. 


2018 ◽  
Vol 2 (1) ◽  
pp. 01-04
Author(s):  
Mansour Binandeh

Initially, magnetic nanoparticles (MNP) Fe3O4 are synthesized by a chemical correlation method and its core / shell structure is detected using SEM, FT-IR analysis. The purpose of this production was to use the nanoparticle performance level in the absorption of antibiotics, namely, ampicillin (amp). Absorption sampling was analyzed by UV-Vis spectrophotometer and the results indicate that the absorbance of the ampere increases to 85%. The bond between these two is electrostatic bonding, which was confirmed by EDX analysis. Ultimately, this compound was used for the antibacterial process. In this case, the MNP-amp compound was added in a natural amount of 20 μl a bacterial culture pattern overnight (In-vitro). The results showed that 95% of the bacteria were killed (confirmation of antibacterial properties of MNP). Therefore, it can be transmitted intentionally by controlling the magnetic field into living cells for the destruction of pathogenic bacteria.


2019 ◽  
Vol 19 (2) ◽  
pp. 405
Author(s):  
Agung Pratama ◽  
Firman Sebayang ◽  
Rumondang Bulan Nasution

Cellulose and chitosan are natural polymers that have been used as biocomposite. The aim of this research is to obtain biofilms from chitosan and oxidized cellulose crosslinks. This research is divided into three steps, i.e., isolation of cellulose from oil palm trunk and oxidation of cellulose using NaIO4 (0.2; 0.4; 0.6; 0.8; 1.0 mg/mL) to obtain dialdehyde cellulose (DAC), crosslink of oxidized cellulose with chitosan (DD = 72.85%) to obtain biofilm of chitosan/DAC (CDAC), and characterization of biofilms. The crosslinked reaction was confirmed by FT-IR analysis that showed the spectrum of Schiff base C=N group at 1651 cm–1. Tensile strength increased gradually when the NaIO4 concentration used was 0.2–0.6 mg/mL, but after those concentrations, the tensile strength slightly decreased. The morphology analysis showed that CDAC had smoother morphology than DAC, which was shown rough and showed some particle indicated the presence of unreacted cellulose. CDAC biofilms that prepared with 1.0 mg/mL NaIO4 showed the greatest antibacterial activity.


2017 ◽  
Vol 751 ◽  
pp. 270-276 ◽  
Author(s):  
Warot Prasanseang ◽  
Chaval Sriwong ◽  
Kittisak Choojun

Ag-natural rubber (Ag-NR) hybrid sheets were successfully prepared with a very simple and low cost method. In this method, silver nanoparticles (AgNPs) were firstly synthesized by a rapid and green microwave-assisted using polyvinylpyrroridone (PVP) media. The effect of PVP weight ratios towards the size of AgNPs was also investigated. Then, Ag-NR hybrid sheet samples were prepared by latex mixing-casting method using concentrated natural rubber (NR) latex with the synthesized AgNPs colloids. The characteristic absorption, particles sizes and shapes of the obtained AgNPs were examined through UV-vis, TEM and SAED. Also, the prepared Ag-NR sheet samples were characterized using XRD, FT-IR, SEM and EDS techniques. It was found that the particles sizes of all the synthesized AgNPs had spherical-like shape, and the mean sizes were increased from 29.7 to 90.4 nm upon increasing PVP contents. EDS results showed the AgNPs were well-dispersed and impregnated into the rubber matrix. Moreover, the antibacterial properties of the prepared Ag-NR sheets were tested by agar disk-diffusion method with Gram-positive and Gram-negative bacteria as Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli), respectively. The results showed that the hybrid sheets exhibited excellent antibacterial properties against these bacteria, in which the zones of inhibition were also dependent on the synthesized AgNPs by utilizing the different amounts of PVP.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Martin Muthee Gakuubi ◽  
Angeline W. Maina ◽  
John M. Wagacha

The objective of this study was to evaluate the antifungal activity of essential oil (EO) ofEucalyptus camaldulensisDehnh. against fiveFusariumspp. commonly associated with maize.The essential oil had been extracted by steam distillation in a modified Clevenger-type apparatus from leaves ofE. camaldulensisand their chemical composition characterized by gas chromatography mass spectrometry. Poisoned food technique was used to determine the percentage inhibition of mycelial growth, minimum inhibitory concentration, and minimum fungicidal concentration of the EO on the test pathogens. Antifungal activity of different concentrations of the EO was evaluated using disc diffusion method. The most abundant compounds identified in the EO were 1,8-cineole (16.2%),α-pinene (15.6%),α-phellandrene (10.0%), and p-cymene (8.1%). The EO produced complete mycelial growth inhibition in all the test pathogens at a concentration of 7-8 μL/mL after five days of incubation. The minimum inhibitory concentration and minimum fungicidal concentration of the EO on the test fungi were in the range of 7-8 μL/mL and 8–10 μL/mL, respectively. These findings confirm the fungicidal properties ofE. camaldulensisessential oils and their potential use in the management of economically importantFusariumspp. and as possible alternatives to synthetic fungicides.


Author(s):  
Dalila Razni ◽  
Linda Rouisset ◽  
Elhassan Benyagoub

This study is a part of the valorization of extract from three most commonly used Algerian spices, namely; caraway and cumin seeds and cinnamon bark. On the one hand, it aims at characterizing the chemical indices of extracted essential oils and evaluating the antibacterial activity of each essential oil by titration and disc diffusion method respectively. On the other hand, it attempts at evaluating the combined action of essential oils against four reference pathogenic bacterial strains, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis by well and Chabbert-type diffusion method. The essential oils obtained by the hydrodistillation method have a relatively average extraction about 1.43, 2.3 and 2.5%, respectively for caraway, cumin, and cinnamon. The acid index indicates the behavior and amount of free acids present in the essential oil, in which the acid and saponification indices of cinnamon essential oil indicate a value of 4.48 and 168.56 respectively. It can also inform us about the susceptibility of the oil to undergo alterations. The antibacterial activity results showed that cinnamon essential oil (EO) proved to be the most active against the tested bacterial strains; caraway EO was active against Enterococcus faecalis, and the antibacterial action of cumin EO was the lowest. However, the association of the extracted essential oils has a higher synergistic effect than the independent effect of each essential oil, in which the MIC value found was estimated at 10 to 20 (V/V), 40 to 50 (V/V) and 50 to 70 (V/V) respectively for cinnamon, cumin and caraway. The obtained results show that the response to the antibacterial activity varies according to the plant species used and the extract tested alone or in combination.


2020 ◽  
Vol 33 (4) ◽  
pp. 197-201
Author(s):  
Hicham Boughendjioua ◽  
Nour El Houda Mezedjeri ◽  
Ilhem Idjouadiene

Abstract Medicinal plants are potential sources of natural compounds with biological activities and therefore attract the attention of researchers worldwide. Citrus oils are a complex mixture of more than a hundred components of differing chemical natures. Qualitative and quantitative analysis by gas chromatography coupled with mass spectrometry (GCMS) of the Citrus reticulata essential oil collected from El Hadaïk, Skikda City (Algeria), identified 28 compounds representing a total of 99.41%. The essential oil is constituted mainly of: D-Limonene (85.10%), Sabinene (2.49%), Linalyl acetate (2.00%), Copaene (1.80%) et α-Pinene (1.75%) totaling approximately 93.14%. The essential oil was also analyzed by Fourier transform infrared spectroscopy analysis (FTIR). FTIR spectroscopy allowed us to identify 10 volatile compounds and indicated that the functional groups of the essential oils are C-H (Alkene), C-H (aromatic) and C=C. The obtained results have shown that the essential oil can be fully utilized for pharmacy, cosmetology and industry.


Author(s):  
Yuliati Yuliati

Turmeric is a spice plants that acts as an antibacterial, because it contains a variety of compounds including curcumin and essential oil. Essential oils can be used as an antibacterial because it contains hydroxyl and carbonyl functional group which is phenols derivative. Te phenol derivatives will interact with the bacterial cell wall, then absorbed and penetrated into the bacterial cell, causing precipitation and denaturation of proteins, the result will lyse the bacterial cell membrane, while the antibacterial activity of curcuminis by inhibiting bacterial cell proliferation. Turmeric has launched a pharmacological effect, lowering the fat content, asthma , hepatitis , anti- gall , anti- inflammatory , anti- diarrhea , and act as anti-inflammatory or anti-inflammatory. Turmeric has antibacterial properties of curcumin and essential oil that is capable of inhibiting the growth of bacteria that causes diarrhea and Shigelladysenteriae Bacillus sp. Tis study was conducted to determine the effectiveness of turmeric extract on the growth of Bacillus sp and Shigella dysenteriae, with various concentrations of 15%, 30%, 50%, 75%, and 100% by the well diffusion method. Based on theinhibition zone measurement of bacteria Bacillus sp and Shigella dysenteriaethe results were weak category, for the bacteria Bacillus sp with a concentration of 15 % , 30 % , 50 % , 75 % , and 100 % with a diameter of 11 ; 12.3 ; 13 , 3 ; 13.7 ; 14.7 mm, while for the bacteria Shigella dysenteriae with the same concentration has a diameter of 10.3 ; 11.7 ; 12.3 ; 13.3 , and 14.7 mm. Te conclusion of the study is that the antibacterial activity of turmeric extract is more effective against the bacteria Bacillus spthan against bacteria Shigella dysenteriae, although the difference was not signifcant.


2021 ◽  
Vol 15 (4) ◽  
pp. 324-329
Author(s):  
Pengxiang Lai ◽  
Xin-Chen Zhang ◽  
Lin Zhu ◽  
Xin-Yu Li ◽  
Li-Chuan Liu

The essential oil (EO) of aerial parts of Mallotus repandus (Willd.) Muell. Arg. was extracted by hydrodistillation and characterized by GC/FID and GC/MS. Fifty-one compounds comprising 97.1% of the EO were identified, of which α-humulene (18.7%), β-selinene (12.8%), aciphyllene (10.7%), (E)-caryophyllene (8.4%), α-copaene (5.5%), humulene epoxide II (4.9%) and caryophyllene oxide (4.3%) were the major compounds. The EO was evaluated for antibacterial properties using broth microdilution method and crystal-violet static biofilm formation assay. The M. repandus EO possessed a bactericidal effect against tested gram-positive bacteria strains (MIC = MBC: 0.05-0.10 mg/mL). Further, the EO showed the ability to inhibit the biofilm formation of Staphylococcus aureus. In addition, the potential synergistic effect was assessed by checkerboard method. Combination of the M. repandus EO with Streptomycin showed synergistic effects against the tested bacterial strains. This study demonstrates that M. repandus EO could be further explored as good alternative for potential pharmaceuticals.


Sign in / Sign up

Export Citation Format

Share Document