Producing and properties of detonation coatings based on FeMoNiCrB amorphizing alloy with addition of strengthening phases

2021 ◽  
Vol 2021 (12) ◽  
pp. 38-45
Author(s):  
Yu.S. Borisov ◽  
◽  
A.L. Borisova ◽  
T.V. Tsimbalista ◽  
A.I. Kildiy ◽  
...  
Keyword(s):  
Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 966
Author(s):  
Qingle Tian ◽  
Kai Deng ◽  
Zhishuai Xu ◽  
Ke Han ◽  
Hongxing Zheng

Using a centrifugal casting method, along with deformation and aging, we produced a high-strength, low-anisotropy Al-Li plate. The electron probe microanalysis, transmission electron microscope, differential scanning calorimetry, and X-ray diffraction were used to clarify the evolution of strengthening phases. Experimental results showed that centrifugal-cast Al-Li plate consisted of intragrain δ′—(Al,Cu)3Li precipitate and interdendritic θ′—Al2Cu particles. After cold-rolling to a reduction ratio of 60% and annealing at 800 K for 90 min, both primary θ′ and δ′ were dissolved in solid solution. Aging at 438 K for 60 h led to the formation of two kinds of precipitates (needle-like T1—Al2CuLi and spherical δ′ in two sizes), which acted as the main strengthening phases. The average values of ultimate tensile strength and yield strength for the anneal-aged plate reached 496 MPa and 408 MPa, with a total elongation of 3.9%. The anneal-aged plate showed mechanical anisotropy of less than 5%. The tensile fracture morphology indicated a typical intergranular fracture mode.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2010
Author(s):  
Shuo Wang ◽  
Yuhong Zhao ◽  
Huijun Guo ◽  
Feifei Lan ◽  
Hua Hou

In this paper, the mechanical properties and minimum thermal conductivity of ZnZr, Zn2Zr, Zn2Zr3, and MgZn2 are calculated from first principles. The results show that the considered Zn-Zr intermetallic compounds are effective strengthening phases compared to MgZn2 based on the calculated elastic constants and polycrystalline bulk modulus B, shear modulus G, and Young’s modulus E. Meanwhile, the strong Zn-Zr ionic bondings in ZnZr, Zn2Zr, and Zn2Zr3 alloys lead to the characteristics of a higher modulus but lower ductility than the MgZn2 alloy. The minimum thermal conductivity of ZnZr, Zn2Zr, Zn2Zr3, and MgZn2 is 0.48, 0.67, 0.68, and 0.49 W m−1 K−1, respectively, indicating that the thermal conductivity of the Mg-Zn-Zr alloy could be improved as the precipitation of Zn atoms from the α-Mg matrix to form the considered Zn-Zr binary alloys. Based on the analysis of the directional dependence of the minimum thermal conductivity, the minimum thermal conductivity in the direction of [110] can be identified as a crucial short limit for the considered Zn-Zr intermetallic compounds in Mg-Zn-Zr alloys.


Author(s):  
Katrin Mester ◽  
Baptiste Rouxel ◽  
Timothy Langan ◽  
Justin Lamb ◽  
Matthew Barnett ◽  
...  

2007 ◽  
Vol 546-549 ◽  
pp. 1281-1288 ◽  
Author(s):  
Xi Shan Xie ◽  
Jian Xin Dong ◽  
Mai Cang Zhang ◽  
Shu Hong Fu

High temperature structure stability of 2 important Nb-containing Ni-base superalloys Inconel 718 (Ni-19Cr-18Fe-3Mo-5Nb-1Ti-0.5Al) and Inconel 740 (Ni-25Cr-20Co-0.5Mo-2Nb -1.8Ti-0.8Al) have been studied on the relationship of microstructure to mechanical properties via SEM, TEM, SAD, XRD and quantitative determination of precipitated phases by micro-chemical analysis. The longest exposure times are 50,000hrs at 650°C for Alloy 718 and 4,000hrs at 704°C, 725°C and 760°C for Alloy 740. The structure instabilities for these 2 Alloys are: 1) strengthening phases γ″/γ′ coarsening; 2) meta-stable strengthening phases change to stable phase, such as γ″→ δ-Ni3Nb for Alloy 718 and γ′→ η-Ni3Ti for Alloy 740; 3) embrittling phases formation, such as α-Cr and σ-phase formation in Alloy 718 and high Si-containing G-phase formation in Alloy 740. On the base of understanding phase changes at high temperature exposures the structure stability of Inconel 718 and Inconel 740 has been improved both by minor adjustment of alloys chemistry. The modifications of Alloy 718 and Alloy 740 are to be developed in the near future.


2014 ◽  
Vol 936 ◽  
pp. 1132-1137
Author(s):  
J. Jin ◽  
Y.B. Chen ◽  
K.W. Gao ◽  
X.l. Huang

The corrosion resistance of metal-N double-element alternate implanted M50NiL bearing steel was investigated by potentiodynamic polarization and detection methods of SEM, XPS, AES and TEM. The results showed that ion implanted M50NiL can increase the corrosion potential of substrate, reduce the corrosion active points and inhibit the corrosion reaction induced at the grain boundaries. The formed amorphous layer and strengthening phases take main roles in improving the corrosion resistance of M50NiL bearing steel.


2011 ◽  
Vol 488-489 ◽  
pp. 521-524
Author(s):  
Aleksandar Davidkov ◽  
Roumen H. Petrov ◽  
Peter De Smet ◽  
Leo Kestens

The bending properties of high strength precipitation-hardening AA6016-type Al alloy thin sheets in pre-aged T4P temper state were studied in this work. Microstructural features like grain boundary particles distribution and volume fraction of the matrix strengthening phases were considered as factors controlling the mechanical properties and the fracture of this grade. Remarkable decrease in ductility, accompanied by severe deterioration of bendability occurred when coarse precipitates were found into the grain boundaries. The in-situ fracture sequence investigations as well as the post-failure surfaces observations indicated that grain boundary ductile fracture mechanisms were involved in the propagation of the cracks during bending. Heat treatment simulations were carried out and the results showed that the precise control of the technological parameters during production of these sheets is the key factor responsible for obtaining an appropriate combination of strength and bendability. Only by providing both, homogeneous distribution of the matrix strengthening phases and a favourable grain boundary structure, the severe and often contradictory requirements for the functional properties of these alloys can be successfully satisfied.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5037
Author(s):  
Tao Ma ◽  
Sicong Zhao ◽  
Liping Wang ◽  
Zhiwei Wang ◽  
Erjun Guo ◽  
...  

The effect of solution treatment time on the microstructure and mechanical properties of aged the Mg-2.0Nd-2.0Sm-0.4Zn-0.4Zr (wt.%) alloy were investigated to give full play to the performance of the alloy. As the solution treatment time increased from 2 h to 12 h at 788 K, the grain size of the solution-treated alloy significantly increased, and the network-like β-Mg12(Nd, Sm, Zn) phase gradually dissolved into the α-Mg matrix. It should be noted that no obvious residual β phase can be observed when the solution treatment time was more than 8 h. After the solution-treated alloy was further aged at 473 K for 18 h, a large number of nanoscale precipitates were observed in the α-Mg matrix. The solution treatment time was 2 h, the α-Mg matrix mainly consisted of spherical-shaped and basal plate-shaped precipitates. Upon the increase of solution treatment time to 8 h, the key strengthening phases transformed from spherical-shaped precipitates and basal plate-shaped precipitates to prismatic plate-shaped β′ precipitates. The orientation relationship between β′ precipitates and α-Mg matrix was (1¯10)β′ // (11¯00)α and [112]β′ // the [224¯3]α. Further increasing of solution treatment time from 8 h to 12 h, the key strengthening phases mainly were still β′ precipitates. The solution treatment of aged alloy was carried out at 788 K for 8 h, which achieved optimal ultimate tensile strength (UTS) of 261 ± 4.1 MPa, yield strength (YS) of 154 ± 1.5 MPa, and elongation of 5.8 ± 0.1%, respectively.


Sign in / Sign up

Export Citation Format

Share Document