scholarly journals Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite

2013 ◽  
Vol 4 ◽  
pp. 325-329 ◽  
Author(s):  
Hamonangan Nainggolan ◽  
Saharman Gea ◽  
Emiliano Bilotti ◽  
Ton Peijs ◽  
Sabar D Hutagalung

The effects of the addition of fibres of bacterial cellulose (FBC) to commercial starch of Mater-Bi® have been investigated. FBC produced by cultivating Acetobacter xylinum for 21 days in glucose-based medium were purified by sodium hydroxide 2.5 wt % and sodium hypochlorite 2.5 wt % overnight, consecutively. To obtain water-free BC nanofibres, the pellicles were freeze dried at a pressure of 130 mbar at a cooling rate of 10 °C min−1. Both Mater-Bi and FBC were blended by using a mini twin-screw extruder at 160 °C for 10 min at a rotor speed of 50 rpm. Tensile tests were performed according to ASTM D638 to measure the Young’s modulus, tensile strength and elongation at break. A field emission scanning electron microscope was used to observe the morphology at an accelerating voltage of 10 kV. The crystallinity (T c) and melting temperature (T m) were measured by DSC. Results showed a significant improvement in mechanical and thermal properties in accordance with the addition of FBC into Mater-Bi. FBC is easily incorporated in Mater-Bi matrix and produces homogeneous Mater-Bi/FBC composite. The crystallinity of the Mater-Bi/FBC composites decrease in relation to the increase in the volume fraction of FBC.

2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


2020 ◽  
Vol 54 (18) ◽  
pp. 2489-2504 ◽  
Author(s):  
Ulas Can ◽  
Cevdet Kaynak

The main purpose of this study was to investigate mechanical and thermal performance of polylactide specimens against UV irradiation; first when only adding benzotriazole benzotriazole-based organic UV absorber (UVA), micro (200 nm) and nano (50 nm) sized titania (TiO2) particles alone, and then to reveal possible synergism when they are added together. Compounds were prepared by twin-screw extruder melt mixing, while the 2 mm thick specimens were shaped by compression molding. Specimens were exposed to UV irradiation under fluorescent lamps (UVB-313) with 0.50 W/m2 for the periods of 12 and 24 days. Changes in the performance of UV irradiated specimens were evaluated in terms of % weight loss, changes in color and chemical structure, including the decreases in the mechanical and thermal properties. Various tests and analysis revealed that synergistic benefits of using micro and nano TiO2 particles together with benzotriazole-type UVA were not only due to the effective stiffening, strengthening and toughening actions of titania particles, but also due to their very significant “UV screening” actions absorbing the photons of the UV irradiation, thus decreasing the degree of the detrimental photodegradation reactions leading to chain scissions in their PLA matrix.


2012 ◽  
Vol 527 ◽  
pp. 44-49
Author(s):  
Remo Merijs Meri ◽  
Janis Zicans ◽  
Tatjana Ivanova ◽  
Rita Berzina ◽  
Guntis Japins ◽  
...  

Structure as well as mechanical and thermal properties of the nanocomposites based on recycled polyethylene terephthalate (RPET) are investigated. 1, 2 and 5 wt. % of unmodified montmorillonite nanoclay (MMT) were introduced in the RPET matrix by melt compounding in a twin screw extruder. Results of the investigations testify that optimum content of MMT for modification of RPET is between 1 and 2 wt. %. Up to this nanofiller weight content, the most rapid increase of stiffness, strength and impact toughness is observed. Besides it, at this nanofiller weight content the investigated composite have somewhat improved thermal resistance. It is demonstrated that the improvement of these properties is due to better distribution of MMT in the polymer matrix. At higher nanofiller content, the undesirable effects of the nanofiller agglomeration becomes more important.


2019 ◽  
pp. 089270571987667 ◽  
Author(s):  
Carlos Ivan Ribeiro de Oliveira ◽  
Marisa Cristina Guimarães Rocha ◽  
Joaquim Teixeira de Assis ◽  
Ana Lúcia Nazareth da Silva

The aim of this study is to evaluate the effect of some experimental variables such as the content of styrene–ethylene–butylene–styrene (SEBS) and talc, processing conditions and mixing protocol on the properties of polypropylene (PP). To achieve this objective, PP/SEBS blends and PP/SEBS/talc composites were processed in a corotating twin-screw extruder. A masterbatch of PP/talc was prepared before the extrusion of PP/SEBS/talc composites. The morphology of blends and composites was evaluated by scanning electron microscopy, which revealed the dispersion of small rubber droplets in the PP matrix. Moreover, the micrographs also showed that SEBS and talc particles were uniformly dispersed and distributed in the polymer matrix. Results of thermal properties showed that talc had a nucleating effect, which promoted the increase of both PP crystallization temperature and crystallinity degree. The incorporation of talc in PP/SEBS blends led to an expressive increase in the impact resistance by 70% as compared with the reference blend: PP/SEBS 80/20% (w/w). This result reveals that although the PP/SEBS/talc composites showed a separated morphology, the good dispersion and distribution of this mineral filler in the polymers contributed to avoid crack propagation and increase the impact properties. The tensile properties in the elastic region were not significantly affected.


2018 ◽  
Vol 917 ◽  
pp. 3-6 ◽  
Author(s):  
Muhammad Haniff ◽  
Mohd Bijarimi ◽  
M.S. Zaidi ◽  
Ahmad Sahrim

PLA has limited applications due to its inherent brittleness, toughness and low elongation at break. One of the options for improvement is through blending with polyoxymethylene (POM). Melt blending of polylactic acid (PLA) and polyoxymethylene (POM) at 90/10 PLA/POM composition was carried out in a twin-screw extruder. The PLA/POM was loaded with 1 – 5 wt.% of nanoclay (Cloisite C20). The blends were then characterized for mechanical, morphological, chemical and thermal properties. It was found that tensile strength, Young's modulus, and elongation at break improved when the loadings of nanoclay were increased. Chemical analysis by FTIR revealed that PLA/POM blend is immiscible.


2013 ◽  
Vol 684 ◽  
pp. 75-79
Author(s):  
Esmat Jalalvandi ◽  
Taravat Ghanbari ◽  
Hossein Cherghibidsorkhi ◽  
Ehsan Zeimaran ◽  
Hamid Ilbeygi

Thermoplastic starch, polylactic acid glycerol and maleic anhydride (MA) were compounded with natural montmorillonite (MMT) through a twin screw extruder to investigate the effects of different loading of MMT on tensile properties and thermal behavior of the nanocomposites. Tensile results showed an increased in modulus, tensile strength and elongation at break. However, beyond 3phr of MMT the modulus of samples decreased because the MMT particles agglomerated. The thermal properties were characterized by using differential scanning calorimeter (DSC). The results showed that MMT increased melting temperature and crystallization temperature of matrix but reduction in glass transition temperature was observed.


2020 ◽  
pp. 204124792096850
Author(s):  
N Goudarzian ◽  
M Esmaeli ◽  
SM Mousavi ◽  
SA Hashemi ◽  
M Zarei ◽  
...  

In this paper, the mechanical and morphological properties of biodegradable SAN/EOC/Nanoclay/Proteins nanocomposite were investigated. The composites were first prepared by a laboratory-scale twin screw extruder. Morphology of the blend was determined by SEM images. Mechanical properties in terms of tensile tests were carried out by Testometric TS2000, stress at break, strain at break, and Young’s modulus was determined. Based on mechanical results, although the young’s modulus increases with increasing protein content but the strain at break of the composite decreases acutely because of the presence of protein. The blend indicated an improvement in mechanical and thermal properties. Today, according to the vast application of plastic in different fields, environmental issues were affected by these kinds of non-degradable materials, so that biodegradability of the plastics is just the remaining route to solve. In this research, biodegradable blends were prepared using whey protein as a biodegradable natural polymer. The results of the biological procedure-test after 3 months indicated sufficient weight loss and biodegradation of these blends.


2018 ◽  
Vol 783 ◽  
pp. 18-22
Author(s):  
He Zhi He ◽  
Bi Da Liu ◽  
Bin Xue ◽  
Zhi Wen Zhu ◽  
Feng Xue ◽  
...  

Poly(lactic acid) (PLA)/Poly(butylene-adipate-co-terephthalate) (PBAT) blends were prepared through corotating tri-screw extruder. Ethylene-methyl acrylate-glycidyl methacrylate terpolymer (EGMA) was used as a reacting compatibilizer to increase the interface bonding force. The effect of EMGA on the mechanical properties, thermal properties and chemical structure of PLA/PBAT blends were researched respectively through multi-use mechanical testing machine, differential scanning calorimeter and Fourier transform infrared spectroscopy. The results indicate that the compatibility between PLA and PBAT could be enhanced by incorporating EGMA, and all of the blends with EGMA showed increase in impact strength and elongation at break. PLA/PBAT blends showed optimum elongation at break with 6% of EGMA. DSC study also indicated the greatest crystallinity when adding 6% of EGMA. Excessive addition of EGMA instead reduced the crystallinity and elongation at break.


2021 ◽  
pp. 096739112110080
Author(s):  
Yelda Meyva Zeybek ◽  
Cevdet Kaynak

The main purpose of this study was to investigate influences of three parameters on the mechanical and thermal properties of the polylactide (PLA) matrix nanocomposites filled with polyhedral oligomeric silsesquioxane (POSS) particles. For the first parameter of “Filler Content”, nanocomposites with 1, 3, 5, 7 wt% basic POSS structure were compared. For the second parameter of “Functional Group,” basic POSS structure having only nonpolar isobutyl groups were compared with three other functionalized POSS structures; i.e. aminopropylisobutyl-POSS (ap-POSS), propanediolisobutyl-POSS (pd-POSS) and octasilane-POSS (os-POSS). Finally, for the third parameter of “Copolymer Compatibilization,” all specimens were compared before and after their maleic anhydride (MA) grafted copolymer compatibilization. Specimens were produced with twin-screw extruder melt mixing and shaped under compression molding. Various tests and analyses indicated that the optimum filler content for the improved mechanical properties was 1 wt%; while the optimum structure for strength and modulus was pd-POSS structure, in terms of fracture toughness it was basic POSS structure. Additional use of MA compatibilization was especially effective for the basic POSS and os-POSS particles.


Sign in / Sign up

Export Citation Format

Share Document