The effective of physical exercise on oxidative stress, antioxidant level and to the ratio of pro-inflammatory to anti-inflammatory cytokines in the serum of PLWHA: a systematic review

Author(s):  
Ibeneme Sam ◽  
Anthony Ifeanyichukwu ◽  
Ireh Frank
Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3578 ◽  
Author(s):  
Tae-Kyeong Lee ◽  
Il-Jun Kang ◽  
Bora Kim ◽  
Hye Jin Sim ◽  
Dae- Won Kim ◽  
...  

Chlorogenic acid (CGA), an ester of caffeic acid and quinic acid, is among the phenolic acid compounds which can be naturally found in green coffee extract and tea. CGA has been studied since it displays significant pharmacological properties. The aim of this study was to investigate the effects of CGA on cognitive function and neuroprotection including its mechanisms in the hippocampus following transient forebrain ischemia in gerbils. Memory and learning following the ischemia was investigated by eight-arm radial maze and passive avoidance tests. Neuroprotection was examined by immunohistochemistry for neuronal nuclei-specific protein and Fluoro-Jade B histofluorescence staining. For mechanisms of the neuroprotection, alterations in copper, zinc-superoxide dismutase (SOD1), SOD2 as antioxidant enzymes, dihydroethidium and 4-hydroxy-2-nonenal as indicators for oxidative stress, and anti-inflammatory cytokines (interleukin (IL)-4 and IL-13) and pro-inflammatory cytokines (tumor necrosis factor α (TNF-α) and IL-2) were examined by Western blotting and/or immunohistochemistry. As a result, pretreatment with 30 mg/kg CGA attenuated cognitive impairment and displayed a neuroprotective effect against transient forebrain ischemia (TFI). In Western blotting, the expression levels of SOD2 and IL-4 were increased due to pretreatment with CGA and, furthermore, 4-HNE production and IL-4 expressions were inhibited by CGA pretreatment. Additionally, pretreated CGA enhanced antioxidant enzymes and anti-inflammatory cytokines and, in contrast, attenuated oxidative stress and pro-inflammatory cytokine expression. Based on these results, we suggest that CGA can be a useful neuroprotective material against ischemia-reperfusion injury due to its antioxidant and anti-inflammatory efficacies.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jiah Ning Tan ◽  
Shamin Mohd Saffian ◽  
Fhataheya Buang ◽  
Zakiah Jubri ◽  
Ibrahim Jantan ◽  
...  

Background:Gynura species have been used traditionally to treat various ailments, such as fever, pain, and to control blood glucose level. This systematic review critically discusses studies regarding Gynura species that exhibited antioxidant and anti-inflammatory effects, thus providing perspectives and instructions for future research of the plants as a potential source of new dietary supplements or medicinal agents.Methods: A literature search from internet databases of PubMed, Scopus, Science Direct, e-theses Online Service, and ProQuest was carried out using a combination of keywords such as “Gynura,” “antioxidant,” “anti-inflammatory,” or other related words. Research articles were included in this study if they were experimental (in vitro and in vivo) or clinical studies on the antioxidant or anti-inflammatory effects of Gynura species and if they were articles published in English.Results: Altogether, 27 studies on antioxidant and anti-inflammatory effects of Gynura species were selected. The antioxidant effects of Gynura species were manifested by inhibition of reactive oxygen species production and lipid peroxidation, modulation of glutathione-related parameters, and enzymatic antioxidant production or activities. The anti-inflammatory effects of Gynura species were through the modulation of inflammatory cytokine production, inhibition of prostaglandin E2 and nitric oxide production, cellular inflammatory-related parameters, and inflammation in animal models. The potential anti-inflammatory signaling pathways modulated by Gynura species are glycogen synthase kinase-3, nuclear factor erythroid 2-related factor 2, PPARγ, MAPK, NF-κB, and PI3K/Akt. However, most reports on antioxidant and anti-inflammatory effects of the plants were on crude extracts, and the chemical constituents contributing to bioactivities were not clearly understood. There is a variation in quality of studies in terms of design, conduct, and interpretation, and in-depth studies on the underlying mechanisms involved in antioxidant and anti-inflammatory effects of the plants are in demand. Moreover, there is limited clinical study on antioxidant and anti-inflammatory effects of Gynura species.Conclusion: This review highlighted antioxidant and anti-inflammatory effects of genus Gynura and supported their traditional uses to treat oxidative stress and inflammatory-related diseases. This review is expected to catalyze further studies on genus Gynura. However, extensive preclinical data need to be generated from toxicity and pharmacokinetic studies before clinical studies can be pursued for their development into clinical medicines to treat oxidative stress and inflammatory conditions.


Biomedicines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 29
Author(s):  
Toyin D. Alabi ◽  
Novel N. Chegou ◽  
Nicole L. Brooks ◽  
Oluwafemi O. Oguntibeju

Persistent hyperglycemia is known to cause enhanced generation of reactive oxygen species in diabetes. Several inflammatory cytokines are induced by oxidative stress, and their release also leads to increased oxidative stress; this makes oxidative stress one of the important factors in the development of chronic inflammation and other immune responses. These have been implicated in the development of diabetic complications such as nephropathy and cardiomyopathy. Anchomanes difformis has been shown to possess antioxidant and anti-inflammatory potentials. The present study investigated the immunomodulatory potential and the antiapoptotic ability of Anchomanes difformis to ameliorate heart toxicity and injury in type II diabetes. Two weeks of fructose (10%) administration followed by single intraperitoneal injection of streptozotocin (40 mg/kg) were used to induce type II diabetes in male Wistar rats. Leaf extract (aqueous) of Anchomanes difformis (200 and 400 mg/kg) was administered orally for six weeks. Blood glucose concentrations and body weights before and after interventions were determined. Interleukin (IL)-1β, IL-6, IL-10, IL-18, monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor alpha (TNFα) were measured in the heart homogenates. Catalase (CAT), superoxide dismutase (SOD), total protein, oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), thiobarbituric acid reactive substances (TBARS), and heart-type fatty acid-binding protein (H-FABP) levels were determined. Expressions of transcription factors (Nrf 2 and NFkB/p65) and apoptotic markers were also investigated in the heart. Anchomanes difformis administration reduced pro-inflammatory cytokines, increased anti-inflammatory markers, and enhanced antioxidant defense in the heart of diabetic treated animals. Anchomanes difformis is a new, promising therapeutic agent that can be explored for the treatment of pathological conditions associated with immune responses and will be a useful tool in the management of associated diabetic complications.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15065-e15065
Author(s):  
Massimiliano Berretta ◽  
Vincenzo Quagliariello ◽  
Simona Buccolo ◽  
Martina Iovine ◽  
Michelino De Laurentiis ◽  
...  

e15065 Background: : Polydatin has anticancer and anti-inflammatory properties, however no studies investigated on its putative cardioprotective effects against anticancer therapies. Sunitinib, a recently-approved, multi-targeted tyrosine kinases inhibitor, prolongs survival in patients with metastatic renal cell carcinoma and gastrointestinal stromal tumors, however a dose related cardiotoxicity was well described. We investigated on the reduction of cytokines and growth factors of polydatin resulting in putative cardioprotective effects. Methods: Human fetal cardiomyocytes were untreated (control) or treated for 48 h with polydatin (50,100,200 and 400 µM) or sunitinib (5,10,25 and 50 µM) alone or combined to polydatin. After the incubation period, we performed the following tests: determination of cell viability, through analysis of mitochondrial dehydrogenase activity, study of lipid peroxidation (quantifying cellular malondialdehyde and 4-hydroxynonenal), intracellular Ca2+ homeostasis. Moreover, pro-inflammatory studied were also performed (activation of NLRP3 inflammasome; expression of TLR4/MyD88; mTORC1 Fox01/3a; transcriptional activation of p65/NF-κB and secretion of cytokines involved in cardiotoxicity (Interleukins 1β, 8, 6). Results: Exposure of adult cardiomyocytes to polydatin combined to plasma-relevant concentrations of sunitinib reduces significantly intracellular reactive oxygen species, lipid peroxidation and cytochrome c release from mitochondria leading to a reduction in cell death compared to cells exposed to sunitinib alone. Polydatin reduces expression of pro-inflammatory cytokines and growth factors involved in myocardial damages and down-regulates the signaling pathway of NLRP3 inflammasome and NF-κB, increasing cellular resistance to sunitinib-mediated damages. Conclusions: Data of the present study, although in vitro, indicate that polydatin, besides reducing oxidative stress, has cardioprotective and anti-inflammatory properties, thus indicating one the mechanism(s) by which this metabolite of resveratrol might decrease sunitinib-mediated cardiotoxicity.


2020 ◽  
Author(s):  
Ni Dai ◽  
Chenglin Tang ◽  
Hongdi Zhao ◽  
Pan Dai ◽  
Siqin Huang

Abstract Background: Spinal cord injury (SCI) is a catastrophic central nervous system disease. Inflammatory response and oxidative stress are two critical factors in the pathophysiological process of SCI and closely involved with Apolipoprotein E(ApoE) and Nuclear factor erythroid 2-related factor (Nrf2). Electroacupuncture (EA) has perfectly neuroprotective effect on SCI. However, the underlying mechanism by which EA mediates the inflammatory response and oxidative stress is not completely elucidated. In the present study, we investigated the signaling pathways that EA regulates inflammatory response and oxidative stress through elevation of ApoE and Nrf2 after SCI.Methods: C57BL/6 Wide Type (WT) mice and ApoE -/- mice were subjected to SCI model by a serrefine clamping. Neurological function was detected by BMS scores, ultrastructure of demyelinationed axons was observed by transmission electron microscopy. ApoE, pro- and anti- inflammatory cytokines, oxidative stress-relevant proteins were determined by histochemistry technology. Two-way ANOVA was applied to BMS scores. One-way ANOVA and Bonferroni's multiple comparison test were used to analyse differences among groups.Results: BMS scores were increased gradually and demyelinated axons were improved by EA gradually with the expression of ApoE. EA can inhibit inflammatory response by activation of ApoE, which decreased pro-inflammatory cytokines(TNF-α, IL-6, and IL-1β) expression and increased anti-inflammatory cytokines(IL-10 and TGF-β1).Meanwhile, EA can also inhibit oxidative stress by elevation of Nrf2,which induced HO-1 and NQO1 expression in WT and ApoE -/- mice.Conclusions: EA is a reliable treatment for promoting functional recovery of SCI. Thesynergisticrole of ApoE and Nrf2 in EA regulating inflammatory response and oxidative stress is decisiveto recovery after SCI.


2019 ◽  
Vol 29 ◽  
pp. S489-S490
Author(s):  
H. Moura ◽  
F. Hansen ◽  
D. Silvello ◽  
F. Galland ◽  
F. Rebellato ◽  
...  

2021 ◽  
pp. 096032712110108
Author(s):  
Ava Soltani Hekmat ◽  
Zahra Navabi ◽  
Hiva Alipanah ◽  
Kazem Javanmardi

Doxorubicin (DOX) is an anthracycline antibiotic. Despite its unwanted side effects, it has been successfully used in tumor therapy. Given that oxidative stress and inflammatory factors are essential to cardiotoxicity caused by DOX, we assumed that alamandine, which enhances endogenous antioxidants and has anti-inflammatory effects, may prevent DOX-induced cardiotoxicity. Rats received DOX (3.75 mg/kg) i.p on days 14, 21, 28, and 35 (total cumulative dose = 15 mg/kg) and alamandine (50 μg/kg/day) via mini-osmotic pumps for 42 days. At the end of the 42-day period, we evaluated hemodynamic parameters, electrocardiogram, cardiac troponin I (cTnI), superoxidase dismutase (SOD), total antioxidant capacity (TAC), malondialdehyde (MDA), inflammatory cytokines (tumor necrosis factor-α (TNF-α), IL-1β, NF-κB), apoptosis markers (caspase 3), and histopathology of haemotoxylin- and eosin-stained cardiac muscle fibers were evaluated. DOX significantly increased QT, corrected QT (QTc), and RR intervals. Alamandine co-therapy prevented ECG changes. Alamandine administration restored DOX-induced disruptions in the cardiac muscle architecture and vascular congestion. Alamandine co-therapy also alleviated other effects of DOX, including cardiac contractility, decreased systolic and diastolic blood pressure, and increased left ventricular end-diastolic pressure. Moreover, alamandine co-therapy substantially decreased the elevation of oxidative stress markers, inflammatory cytokines, and caspase 3 in DOX-treated rats. The results suggest that alamandine reduced DOX-induced cardiotoxicity via antioxidant, anti-inflammatory, and anti-apoptotic activities.


2021 ◽  
Vol 14 (4) ◽  
pp. 380
Author(s):  
Hadeel Alsaegh ◽  
Hala Eweis ◽  
Fatemah Kamal ◽  
Aziza Alrafiah

The risk of developing epilepsy is strongly linked to peripheral inflammatory disorders in humans. High-mobility group box protein 1 (HMGB1) has the most focus for being a suspect in this scenario. The current study aimed to detect the celecoxib effect, an anti-inflammatory drug, on decreasing seizure susceptibility and organ damage in lipopolysaccharides (LPS)/pilocarpine (PILO) pretreated Wistar rats. Rats were divided into 6 groups (8 each): group 1 (control), group 2 (PILO), group 3 (PILO+LPS), group 4 (PILO+LPS+(VPA) Valproic acid), group 5 (PILO+LPS+Celecoxib), and group 6 (PILO+LPS+VPA+Celecoxib). LPS was used to induce sepsis and PILO to induce seizures. Oxidative stress markers, pro-inflammatory cytokines, and HMGB1 levels in serum and brain homogenate were evaluated. Histopathological studies were conducted on the hippocampus, liver, lung, and kidney. Treatment with celecoxib either alone or in combination with VPA significantly reduced Racine score and delays latency to generalized tonic-clonic seizures onset with a significant decrease in hippocampal levels of pro-inflammatory cytokines, oxidative stress markers, and increase in reduced glutathione. In addition, celecoxib treatment either alone or in combination with VPA suppressed HMGB1translocation into peripheral circulation more than treatment with VPA alone. Furthermore, hippocampus, liver, lung, and kidney histopathological changes were improved in contrast to other epileptic groups. Celecoxib either alone or combined with VPA has antiepileptic and multiorgan protective effects on acute seizures and inflammatory models induced by PILO with LPS. It decreased histopathological findings, oxidative, and inflammatory effects induced by VPA and LPS. This might be due to its anti-oxidative, anti-inflammatory and anti-HMGB1 mediated effects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhenghui Lu ◽  
Yining Xu ◽  
Yang Song ◽  
István Bíró ◽  
Yaodong Gu

The balance of oxidative and antioxidant systems is of great importance to the human body. Physical exercise, as one of the ways to improve physical health, seems to modulate this balance. However, different intensities and types of physical exercise have other effects on the treatment of unhealthy people. To understand the impact of exercise training on the oxidative and antioxidant systems of adults with oxidative stress-related disorders, a network meta-analysis was used to compare the mixed effects of different intensities and types of exercise training. This systematic review included all eligible RCTs from PubMed, Medline, Cochrane Library, and CINAHL. Eleven of the studies met the inclusion criteria (at study completion, n = 666 participants). Seven studies reported that the level of MDA decreased significantly after exercise (p < 0.05), and 3 studies reported that the level of SOD increased significantly after exercise (p < 0.05). In conclusion, long-term high-intensity aerobic training and Tai Chi or Yoga can effectively improve oxidative stress in unhealthy people. In addition, different types of diseases on the effect of exercise intervention seems to be other, diabetes and chronic kidney patients using moderate-intensity aerobic training or Tai chi and Yoga effect are better; Moderate-intensity aerobic training had a better impact on OS improvement in patients with irritable bowel syndrome and severe depression. However, more research is needed to determine the effects of different levels and types of physical activity on oxidative stress in unhealthy populations.Systematic Review Registration: PROSPERO identifier: CRD42021242025. https://www.crd.york.ac.uk/prospero/.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 213 ◽  
Author(s):  
Joon Ha Park ◽  
Ji Hyeon Ahn ◽  
Tae-Kyeong Lee ◽  
Cheol Woo Park ◽  
Bora Kim ◽  
...  

Laminarin is a polysaccharide isolated from brown algae that has various biological and pharmacological activities, such as antioxidant and anti-inflammatory properties. We recently reported that pretreated laminarin exerted neuroprotection against transient forebrain ischemia/reperfusion (IR) injury when we pretreated with 50 mg/kg of laminarin once a day for seven days in adult gerbils. However, there have been no studies regarding a neuroprotective effect of pretreated laminarin against IR injury in aged animals and its related mechanisms. Therefore, in this study, we intraperitoneally inject laminarin (50 mg/kg) once a day to aged gerbils for seven days before IR (5-min transient ischemia) surgery and examine the neuroprotective effect of laminarin treatment and the mechanisms in the gerbil hippocampus. IR injury in vehicle-treated gerbils causes loss (death) of pyramidal neurons in the hippocampal CA1 field at five days post-IR. Pretreatment with laminarin effectively protects the CA1 pyramidal neurons from IR injury. Regarding the laminarin-treated gerbils, production of superoxide anions, 4-hydroxy-2-nonenal expression and pro-inflammatory cytokines [interleukin(IL)-1β and tumor necrosis factor-α] expressions are significantly decreased in the CA1 pyramidal neurons after IR. Additionally, laminarin treatment significantly increases expressions of superoxide dismutase and anti-inflammatory cytokines (IL-4 and IL-13) in the CA1 pyramidal neurons before and after IR. Taken together, these findings indicate that laminarin can protect neurons from ischemic brain injury in an aged population by attenuating IR-induced oxidative stress and neuroinflammation.


Sign in / Sign up

Export Citation Format

Share Document