scholarly journals Analysis of metothods determining the value of the flow’s speed when entering the lock chamber

2021 ◽  
pp. 178-185
Author(s):  
Evgenia V. Zubkova ◽  
Alexandr N. Klementev ◽  
Vasilii A. Undalov

The purpose of this work is to compare the results of calculating the velocities of the flow around the ship's hull when it enters the lock chamber using various methods. The article presents the mathematical dependences obtained by various authors in the course of their research depending on the coefficient of constraint of the lock chamber by the ship's hull. An attempt to determine the influence of the height of the wave that arises in front of the stem in the process of entry which creates a slope of the water surface and the effect of this factor on the speed of the flowing stream is made. It was found that the values ​​of the flow velocities calculated by various methods have discrepancies. And the methods themselves do not allow determining the speed of the flow around when large-tonnage vessels enter the lock chamber of an extremely small width. The authors proposed a simple technique for calculating the flow velocity for cases of large values ​​of the constraint coefficient using an auxiliary graph.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A Zagatina ◽  
M Novikov ◽  
N Zhuravskaya ◽  
V Balakhonov ◽  
S Efremov ◽  
...  

Abstract Background Stenosis of a coronary artery results in an increase in flow velocity in the pathologic segment. Effective grafting should decrease the stenotic native coronary velocity according to hemodynamic law. The range of decreased velocity before and after cardiac surgery can hypothetically reflect the effectiveness of a graft. The aim of the study is to determine if measuring coronary flow velocity changes during coronary artery bypass grafting (CABG) can predict intraoperative myocardial infarction. Methods One hundred sixty-six (166) consecutive patients (121 men, 64±9 years old) referred for cardiac surgery, were prospectively included in the study. A standard basic perioperative transesophageal echocardiography (TEE) examination was performed with additional scans of the left main, left anterior descending (LAD), and circumflex (LCx) arteries' proximal segments. Measurements of coronary flow velocities were performed before and after grafting in the same sites of the arteries. The maximal value of cardiac troponin I (cTnI) after CABG and the additive criteria were accounted for in the analysis as it is described in the expert consensus document for Type 5 myocardial infarction (MI) definition. Results One hundred sixty-three patients (98%) had arterial hypertension, 28 patients (17%) had diabetes mellitus, 35 patients (21%) were currently smokers. The feasibility of coronary flow assessment during cardiac operations was 95%. Before grafting, the mean velocity in the left main artery was 91±49 cm/s, in LAD 101±35 cm/s, and in LCx 117±49 cm/s. There was a significant correlation between changes in coronary flow velocities during operation and the value of cTnI (R=0.34, p<0.0001). Ten patients met the criteria for Type 5 MI. There were no differences in age, body mass index, number of coronary arteries with stenoses, frequency of prior MI, ejection fraction or coronary flow velocity before surgery in patients with and without Type 5 MI. The group of patients with Type 5 MI had an increase in native artery velocities during surgery in comparison with patients without MI, who had a significant decrease in coronary flow velocity after grafting (30±48 vs. −10±30 cm/s; p<0.0006). Increases in native coronary velocities greater than 3 cm/s predicted Type 5 MI with 81% accuracy (sensitivity 88%, specificity 70%). Conclusion Coronary flow velocity assessment during cardiac surgery could predict an elevation of cardiac troponins and Type 5 MI. Funding Acknowledgement Type of funding source: None


1997 ◽  
Vol 134 (4) ◽  
pp. 557-561
Author(s):  
KATSUHIRO NAKAYAMA

Miocene subtidal sandwave deposits in southwest Japan were influenced by periodic flow and steady flow. The sandwave deposits can be divided into five units, based on lithofacies and thickness. In order of accretion, unit 1 consists of unidirectional sand bedforms without mud drapes, unit 2 of unidirectional sand bedforms with thin, discontinuous mud drapes, unit 3 of bidirectional sand bedforms with thin continuous mud drapes, and units 4 and 5 of relatively thinner and smaller bidirectional sand bedforms with continuous mud drapes. The thickness of units 1 to 3 increase progressively to 2.6 m, and units 4 to 5 subsequently decrease from 2.0 to 1.0 m. Variations between the units are due to differing combinations of periodic and steady flow velocities. Palaeoflow velocity is estimated from grain size and unit thickness. Depth-mean velocities of steady flow components gradually decrease from 0.72 ms−1 to 0.16 ms−1 with unit accumulation.


2013 ◽  
Vol 59 (214) ◽  
pp. 315-326 ◽  
Author(s):  
A. Richter ◽  
D.V. Fedorov ◽  
M. Fritsche ◽  
S.V. Popov ◽  
V.Ya. Lipenkov ◽  
...  

AbstractRepeated Global Navigation Satellite Systems (GNSS) observations were carried out at 50 surface markers in the Vostok Subglacial Lake (East Antarctica) region between 2001 and 2011. The horizontal ice flow velocity vectors were derived with accuracies of 1 cm a−1 and 0.5°, representing the first reliable information on ice flow kinematics in the northern part of the lake. Within the lake area, ice flow velocities do not exceed 2 m a−1. The ice flow azimuth is southeast in the southern part of the lake and turns gradually to east-northeast in the northern part. In the northern part, as the ice flow enters the lake at the western shore, the velocity decreases towards the central lake axis, then increases slightly past the central axis. In the southern part, a continued acceleration is observed from the central lake axis across the downstream grounding line. Based on the observed flow velocity vectors and ice thickness data, mean surface accumulation rates are inferred for four surface segments between Ridge B and Vostok Subglacial Lake and show a steady increase towards the north.


Author(s):  
Sara Mizar Formentin ◽  
Barbara Zanuttigh

This contribution presents a new procedure for the automatic identification of the individual overtopping events. The procedure is based on a zero-down-crossing analysis of the water-surface-elevation signals and, based on two threshold values, can be applied to any structure crest level, i.e. to emerged, zero-freeboard, over-washed and submerged conditions. The results of the procedure are characterized by a level of accuracy comparable to the human-supervised analysis of the wave signals. The procedure includes a second algorithm for the coupling of the overtopping events registered at two consecutive gauges. This coupling algorithm offers a series of original applications of practical relevance, a.o. the possibility to estimate the wave celerities, i.e. the velocities of propagation of the single waves, which could be used as an approximation of the flow velocity in shallow water and broken flow conditions.


2015 ◽  
Vol 52 (2) ◽  
pp. 3-12
Author(s):  
A. Kalnacs ◽  
J. Kalnacs ◽  
A. Mutule ◽  
V. Entins

Abstract In the rivers of Latvia and of many other countries the flow velocity in the places that are most suitable for installation of hydrokinetic devices is 0.4 to 0.9 m/s. In a stream or a river the hydrokinetic devices can reach full efficiency starting from about twice higher flow velocities. It is advisable to at least double this velocity thus increasing the efficiency and power output of the hydrokinetic devices installed in such places. Since Latvia has abundance of slow rivers and almost none are fast, research in this field is of high importance. Diversified technical methods are known that allow increasing substantially the efficiency of hydrokinetic devices. These methods include the use of diffusers, concentrators, different types of other channelling devices and means of flow control. Desirable effects are achieved through changing the cross-section and/or direction of a flow, its pressure, minimizing the turbulence, etc. This work substantiates the use of such devices for increasing the efficiency of hydrokinetic devices. A method is proposed for evaluation of the effects on power output gained owing to the use of channelling devices. Results show that the efficiency of hydrokinetic devices can be increased by at least 110%.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1619 ◽  
Author(s):  
Bakx ◽  
Doornenbal ◽  
Weesep ◽  
Bense ◽  
Essink ◽  
...  

Active Heating-Distributed Temperature Sensing (AH-DTS) has the potential to allow for the measurement of groundwater flow velocities in situ. We placed DTS fiber-optic cables combined with a heating wire in direct contact with aquifer sediments in a laboratory scale groundwater flow simulator. Using this setup, we empirically determined the relationship between ΔT, the temperature difference by constant and uniform heating of the DTS cable and the background temperature of the groundwater system, and horizontal groundwater flow velocity. Second, we simulated the observed temperature response of the system using a plan-view heat transfer flow model to calibrate for the thermal properties of the sediment and to optimize cable setup for sensitivity to variation in groundwater flow velocities. Additionally, we derived an analytical solution based on the heat flow equation that can be used to explicitly calculate flow velocity from measured ΔT for this specific AH-DTS cable setup. We expect that this equation, after calibration for cable constitution, is valid for estimating groundwater flow velocity based on absolute temperature differences measured in field applications using this cable setup.


Author(s):  
Yi Tan ◽  
Jia Li ◽  
Linglei Zhang ◽  
Min Chen ◽  
Yaowen Zhang ◽  
...  

The effects of hydrodynamics on algae growth have received considerable attention, and flow velocity is one of the most frequently discussed factors. For Euglena gracilis, which aggregates resources and is highly resistant to environmental changes, the mechanism underlying the impact of flow velocity on its growth is poorly understood. Experiments were conducted to examine the response of algae growth to different velocities, and several enzymes were tested to determine their physiological mechanisms. Significant differences in the growth of E. gracilis were found at different flow velocities, and this phenomenon is unique compared to the growth of other algal species. With increasing flow velocity and time, the growth of E. gracilis is gradually inhibited. In particular, we found that the pioneer enzyme is peroxidase (POD) and that the main antioxidant enzyme is catalase (CAT) when E. gracilis experiences flow velocity stress. Hysteresis between total phosphorus (TP) consumption and alkaline phosphatase (AKP) synthesis was observed. Under experimental control conditions, the results indicate that flow velocities above 0.1 m/s may inhibit growth and that E. gracilis prefers a relatively slow or even static flow velocity, and this finding could be beneficial for the control of E. gracilis blooms.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Z. Tsvetanova

Abstract Microbial growth in drinking water distribution systems (DWDS) depends on a great number of factors, and its control represents a great challenge for management of these engineering systems. The present case study assessed the influence that a pair of factors—water chlorination and flow velocity—had on the biofilms formed in a model DWDS in 626 days. The culturable bacteria number and biomass of the biofilms developed under the flow velocities of 0.3 m/s, 0.5 m/s, 0.7 m/s and 1 m/s were determined during three consecutively applied regimes of water chlorination to 0.05 mg/l (in 380 days), 0.42 mg/l (in 46 days) and 0.14 mg/l free chlorine (in 200 days). The results demonstrated that biofilm formation was a prolonged process directly depended on flow velocity at drinking water chlorination to 0.05 mg/l. The increase in the water chlorination to 0.42 mg/l chlorine resulted in both the reduction in culturable bacteria number and biomass removal, but the bacteria killing and the biofilm removal were distinct processes. The biocide action of chlorine was faster and more effective than its biomass removal effect. The chlorine decreasing from 0.42 to 0.14 mg/l resulted in increasing the biofilm HPC densities, although the biomass removal process was still continuing. The study carried out contributes for better understanding the biofilm behavior in DWDS and demonstrates that biofilm formation could be managed within a DWDS through operational decisions on parameters that can be changed and controlled as flow velocity and chlorination to safeguard drinking water quality.


1993 ◽  
Vol 78 (5) ◽  
pp. 776-784 ◽  
Author(s):  
Martin Schöoning ◽  
Reiner Buchholz ◽  
Jochen Walter

✓ To determine whether the frequency shift recorded in basal cerebral arteries corresponds to “true” flow velocities, a prospective comparative study of transcranial color duplex sonography (TCCD) and transcranial Doppler sonography (TCD) was performed. A 2.0-MHz transducer of a computerized TCCD system and a TCD device were used. The middle cerebral artery (MCA) and anterior cerebral artery (ACA) were examined by TCCD in 49 healthy volunteers (mean age 35 ± 12 years). In 45 of the same volunteers a comparative TCD examination was possible. The studies were carried out blindly by different examiners at separate appointments. Peak systolic flow velocity, end-diastolic maximum flow velocity, time-averaged maximum flow velocity, and the pulsatility index were measured by both techniques. Additionally, for TCCD, time-averaged flow velocity was assessed, the resistance index and a spectral broadening index were calculated, and the energy output required for reliable measurement was analyzed. The TCCD signals were recorded in 98% of both MCA's and ACA's; with TCD, signals were recorded in 98% of MCA's and 87% of ACA's. Although in both vessels the angle-corrected peak systolic and time-averaged maximum velocities were approximately 10% to 15% higher in TCCD than in TCD measurements, correlation of flow velocities between both techniques was significant (p < 0.0001); differences between sides and age-dependency of flow velocities corresponded as well. In a reproducibility study, TCCD was repeated in 27 subjects by a third examiner with significant correlation (p < 0.0001) of both TCCD examinations. It is concluded that the advantage of TCCD is associated more with a qualitative aspect than a quantitative one. The additional visual dimension of TCCD can open new diagnostic possibilities in cerebrovascular disorders.


2011 ◽  
Vol 91 (10) ◽  
pp. 1503-1512 ◽  
Author(s):  
Abigail Jade Hunter ◽  
Suzanne J. Snodgrass ◽  
Debbie Quain ◽  
Mark W. Parsons ◽  
Christopher R. Levi

BackgroundCerebral autoregulation can be impaired after ischemic stroke, with potential adverse effects on cerebral blood flow during early rehabilitation.ObjectiveThe objective of this study was to assess changes in cerebral blood flow velocity with orthostatic variation at 24 hours after stroke.DesignThis investigation was an observational study comparing mean flow velocities (MFVs) at 30, 15, and 0 degrees of elevation of the head of the bed (HOB).MethodsEight participants underwent bilateral middle cerebral artery (MCA) transcranial Doppler monitoring during orthostatic variation at 24 hours after ischemic stroke. Computed tomography angiography separated participants into recanalized (artery completely reopened) and incompletely recanalized groups. Friedman tests were used to determine MFVs at the various HOB angles. Mann-Whitney U tests were used to compare the change in MFV (from 30° to 0°) between groups and between hemispheres within groups.ResultsFor stroke-affected MCAs in the incompletely recanalized group, MFVs differed at the various HOB angles (30°: median MFV=51.5 cm/s, interquartile range [IQR]=33.0 to 103.8; 15°: median MFV=55.5 cm/s, IQR=34.0 to 117.5; 0°: median MFV=85.0 cm/s, IQR=58.8 to 127.0); there were no significant differences for other MCAs. For stroke-affected MCAs in the incompletely recanalized group, MFVs increased with a change in the HOB angle from 30 degrees to 0 degrees by a median of 26.0 cm/s (IQR=21.3 to 35.3); there were no significant changes in the recanalized group (−3.5 cm/s, IQR=−12.3 to 0.8). The changes in MFV with a change in the HOB angle from 30 degrees to 0 degrees differed between hemispheres in the incompletely recanalized group but not in the recanalized group.LimitationsGeneralizability was limited by sample size.ConclusionsThe incompletely recanalized group showed changes in MFVs at various HOB angles, suggesting that cerebral blood flow in this group may be sensitive to orthostatic variation, whereas the recanalized group maintained stable blood flow velocities.


Sign in / Sign up

Export Citation Format

Share Document