scholarly journals Development of Wound Dressing for Regenerative Medicine

2021 ◽  
Vol 20 (6) ◽  
pp. 54-95
Author(s):  
Irina S. Kudryashova ◽  
Pavel A. Markov ◽  
Elena Yu. Kostromina ◽  
Petr S. Eremin ◽  
Andrey P. Rachin ◽  
...  

The understanding of the pathophysiological mechanisms of the wound process deepened with the development of science. The technological base that was creating has enabled to serve the clinical needs of tissue repair. These factors, combined with the growing need for healing of infected and chronic wounds, have led to the expansion of the market for wound dressings materials supplies. In this connection, there is a need to generalize and update information about new types of dressings. This review provides an up-to-date understanding of the wound process: cellular and signaling mechanisms of repair, characteristics of the optimal microclimate of the wound bed, morphofunctional re-arrangements of tissues during the healing process. Based on these data, the requirements for the modern wound dressings are formulated. Existing wound dressings have been classified as interacting with body tissue. The bio-functional characteristics of the synthetic and natural polymers used in the dressing are described, including their effect on regenerative processes. A classification of the active medicinal ingredients used in the manufacture of dressings is given, the characteristics of their use on the background of the pathological wound process are considered.

2021 ◽  
Vol 18 ◽  
Author(s):  
Xinchi Feng ◽  
Jinsong Hao

: Chronic wounds remain a significant public problem and the development of wound treatments has been a research focus for the past few decades. Despite advances in the products derived from endogenous substances involved in a wound healing process (e.g. growth factors, stem cells, and extracellular matrix), effective and safe wound therapeutics are still limited. There is an unmet need to develop new therapeutics. Various new pathways and targets have been identified and could become a molecular target in designing novel wound agents. Importantly, many existing drugs that target these newly identified pathways could be repositioned for wound therapy, which will facilitate fast translation of research findings to clinical applications. This review discusses the newly identified pathways/targets and their potential uses in the development of wound therapeutics. Some herbs and amphibian skins have been traditionally used for wound repairs and their active ingredients have been found to act in these new pathways. Hence, screening these natural products for novel wound therapeutics remains a viable approach. The outcomes of wound care using natural wound therapeutics could be improved if we can better understand their cellular and molecular mechanisms and fabricate them in appropriate formulations, such as using novel wound dressings and nano-engineered materials. Therefore, we also provide an update on the advances in the wound therapeutics from natural sources. Overall, this review offers new insights into novel wound therapeutics.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 702
Author(s):  
Seyyed-Mojtaba Mousavi ◽  
Zohre Mousavi Nejad ◽  
Seyyed Alireza Hashemi ◽  
Marjan Salari ◽  
Ahmad Gholami ◽  
...  

Despite the advances that have been achieved in developing wound dressings to date, wound healing still remains a challenge in the healthcare system. None of the wound dressings currently used clinically can mimic all the properties of normal and healthy skin. Electrospinning has gained remarkable attention in wound healing applications because of its excellent ability to form nanostructures similar to natural extracellular matrix (ECM). Electrospun dressing accelerates the wound healing process by transferring drugs or active agents to the wound site sooner. This review provides a concise overview of the recent developments in bioactive electrospun dressings, which are effective in treating acute and chronic wounds and can successfully heal the wound. We also discuss bioactive agents used to incorporate electrospun wound dressings to improve their therapeutic potential in wound healing. In addition, here we present commercial dressings loaded with bioactive agents with a comparison between their features and capabilities. Furthermore, we discuss challenges and promises and offer suggestions for future research on bioactive agent-loaded nanofiber membranes to guide future researchers in designing more effective dressing for wound healing and skin regeneration.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10232
Author(s):  
Muniba Tariq ◽  
Hafiz Muhammad Tahir ◽  
Samima Asad Butt ◽  
Shaukat Ali ◽  
Asma Bashir Ahmad ◽  
...  

Background The present study aimed to prepare effective silk derived formulations in combination with plant extract (Aloe vera gel) to speed up the wound healing process in diabetic mice. Methods Diabetes was induced in albino mice by using alloxan monohydrate. After successful induction of diabetes in mice, excision wounds were created via biopsy puncture (6 mm). Wound healing effect of silk sericin (5%) and silk fibroin (5%) individually and in combination with 5% Aloe vera gel was evaluated by determining the percent wound contraction, healing time and histological analysis. Results The results indicated that the best biocompatible silk combination was of 5% silk fibroin and 5% Aloe vera gel in which wounds were healed in 13 days with wound contraction: 98.33 ± 0.80%. In contrast, the wound of the control group (polyfax) healed in 19 day shaving 98.5 ± 0.67% contraction. Histological analysis revealed that the wounds which were treated with silk formulations exhibited an increased growth of blood vessels, collagen fibers, and much reduced inflammation. Conclusion It can be concluded that a combination of Bombyx mori silk and Aloe vera gel is a natural biomaterial that can be utilized in wound dressings and to prepare more innovative silk based formulations for speedy recovery of chronic wounds.


2021 ◽  
Author(s):  
Mehran Alavi ◽  
Rajender S. Varma

Abstract The aggregation of silver nanoparticles (AgNPs) in colloidal solution and the oxidative cytotoxicity towards human cells are two major hindrances for their thriving medicinal applications. Their incorporation in natural polymers such as cellulose, chitosan, alginate, collagen, gelatin, silk fibroin, carrageenan, hyaluronic acid, keratin and starch may be an alluring alternative strategy to sidestep these complications and attaining the advantageous wound dressings. Biocompatibility, bioavailability, biodegradability, and inherent therapeutic properties known for theses polymers, would accelerate the healing of infected chronic wounds. However, the low thermal stability, mechanical strength, rapid biodegradation, and weak washing resistance properties are some of the limitations for these polymers. Herein, recent advances, present challenges and future perspective for AgNPs incorporated nanocomposites (NCs) are discussed to realize ideal antibacterial activities by exploiting the abundant natural biopolymers.


2021 ◽  
Vol 11 (9) ◽  
pp. 890
Author(s):  
Andreea Barbu ◽  
Bogdan Neamtu ◽  
Marius Zăhan ◽  
Gabriela Mariana Iancu ◽  
Ciprian Bacila ◽  
...  

Chronic wounds represent a major public health issue, with an extremely high cost worldwide. In healthy individuals, the wound healing process takes place in different stages: inflammation, cell proliferation (fibroblasts and keratinocytes of the dermis), and finally remodeling of the extracellular matrix (equilibrium between metalloproteinases and their inhibitors). In chronic wounds, the chronic inflammation favors exudate persistence and bacterial film has a special importance in the dynamics of chronic inflammation in wounds that do not heal. Recent advances in biopolymer-based materials for wound healing highlight the performance of specific alginate forms. An ideal wound dressing should be adherent to the wound surface and not to the wound bed, it should also be non-antigenic, biocompatible, semi-permeable, biodegradable, elastic but resistant, and cost-effective. It has to give protection against bacterial, infectious, mechanical, and thermal agents, to modulate the level of wound moisture, and to entrap and deliver drugs or other molecules This paper explores the roles of alginates in advanced wound-dressing forms with a particular emphasis on hydrogels, nanofibers networks, 3D-scaffolds or sponges entrapping fibroblasts, keratinocytes, or drugs to be released on the wound-bed. The latest research reports are presented and supported with in vitro and in vivo studies from the current literature.


Author(s):  
Surojeet Das ◽  
Vivek Kumar ◽  
Rini Tiwari ◽  
Leena Singh ◽  
Sachidanand Singh

Hydrogels are three-dimensional polymeric network, capable of entrapping substantial amounts of fluids. Hydrogels are formed due to physical or chemical cross-linking in different synthetic and natural polymers. Recently, hydrogels have been receiving much attention for biomedical applications due to their innate structure and compositional similarities to the extracellular matrix. Hydrogels fabricated from naturally derived materials provide an advantage for biomedical applications due to their innate cellular interactions and cellular-mediated biodegradation. Synthetic materials have the advantage of greater tunability when it comes to the properties of hydrogels. There has been considerable progress in recent years in addressing the clinical and pharmacological limitations of hydrogels for biomedical applications. The primary objective of this article is to review the classification of hydrogels based on their physical and chemical characteristics. It also reviews the technologies adopted for hydrogel fabrication and the different applications of hydrogels in the modern era.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1235
Author(s):  
Valentin Brumberg ◽  
Tatiana Astrelina ◽  
Tatiana Malivanova ◽  
Alexander Samoilov

Chronic wounds do not progress through the wound healing process in a timely manner and are considered a burden for healthcare system; they are also the most common reason for decrease in patient quality of life. Traditional wound dressings e.g., bandages and gauzes, although highly absorbent and effective for dry to mild, exudating wounds, require regular application, which therefore can cause pain upon dressing change. In addition, they have poor adhesional properties and cannot provide enough drainage for the wound. In this regard, the normalization of the healing process in chronic wounds is an extremely urgent task of public health and requires the creation and implementation of affordable dressings for patients with chronic wounds. Modern wound dressings (WDs) are aimed to solve these issues. At the same time, hydrogels, unlike other types of modern WDs (foam, films, hydrocolloids), have positive degradation properties that makes them the perfect choice in applications where a targeted delivery of bioactive substances to the wound is required. This mini review is focused on different types of traditional and modern WDs with an emphasis on hydrogels. Advantages and disadvantages of traditional and modern WDs as well as their applicability to different chronic wounds are elucidated. Furthermore, an effectiveness comparison between hydrogel WDs and the some of the frequently used biotechnologies in the field of regenerative medicine (adipose-derived mesenchymal stem cells (ADMSCs), mesenchymal stem cells, conditioned media, platelet-rich plasma (PRP)) is provided.


Proceedings ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 30
Author(s):  
Marta A. Teixeira ◽  
Joana C. Antunes ◽  
M. Teresa P. Amorim ◽  
Helena P. Felgueiras

In the last years, chronic wounds have become more prevalent, leading to a huge burden on the healthcare and social systems by requiring specialized protection. Indeed, wound dressings capable of assisting in the healing process are in urgent need. To that effect, nanofibrous dressings with a structure resembling the extracellular matrix have been engineered by electrospinning from combinations of poly(vinyl alcohol) (PVA) and cellulose acetate (CA) and optimized to endure physiological media contact and mechanical stress after crosslinking. Mats were prepared at different PVA/CA ratios, 100/0, 90/10 and 80/20 v/v%, at 10 w/v% concentration in acetic acid and water in a 75/25 v/v% proportion and processed via electrospinning. Processing conditions were optimized to obtain uniform, continuous, bead free mats, with a flexible structure. The instant solubilization of the PVA portion of the mat in aqueous media was surpassed via crosslinking. Even though there are many chemical agents available to accomplish such task, glutaraldehyde (GA) is by far the most common due to its efficiency, ease of access and processing, and low cost. Further, in its vapor form, GA has demonstrated reduced or no cytotoxic effects. The amount of GA, crosslinking time, temperature, and drying procedure were optimized to guarantee mechanically resilient mats by means of the greenest methodology possible. Indeed, it was determined that GA vapor at 25% in water could be applied for 7 h at 60 °C, using 6 mL of solution, in a 130 × 120 mm2 mat with optimal results. All traces of GA were then eliminated from the mats in a controlled environment (41% relative-humidity and 19 °C). In the end, it was seen that the mechanical resilience and thermal stability of the mats were improved after the application of the modified, green GA-based crosslinking, revealing the engineered methodology potential for applications in biomedical devices.


2018 ◽  
Vol 5 (6) ◽  
pp. 2256 ◽  
Author(s):  
Mohammed Kashif Imran ◽  
Mohan Kumar K. ◽  
Sreeramulu P. N. ◽  
Bhaskaran . ◽  
Krishna Prasad K. ◽  
...  

Background: Chronic non-healing wounds are one of the major burden to the patients in the present era and covers about 1% of adult population and 3.6% of the population greater than 65 years. Chronic leg wounds are the common cause of morbidity and its prevalence in the community range from 1.9 to 13.1%. Indian studies show the prevalence of chronic wounds of around 4.5/1000 population. Recent studies have shown that application of a sub atmospheric pressure in a controlled manner to the wound site helps significantly in wound healing. Aim of the present study is to assess the efficacy of topical negative pressure moist wound dressings in wound healing process in chronic wounds and to prove that negative pressure dressings can be used as a much better treatment option than conventional saline dressings in the management of chronic wounds.Methods: After 10 days, in study group the mean rate of granulation tissue formation, mean graft, mean hospital stay was 81.7%,80.6%, 34.7 days respectively and the same in control group it is 41.9%. ,60.45%, 58.60 days respectively.Results: To conclude, topical negative pressure dressing’s help in faster healing of chronic wounds and better graft take up and reduces hospital stay of these patients.Conclusions: The database of our retrospective study regarding age and sex incidence, clinicopathological features and therapeutic outcome was comparable to other studies in various literatures.


Sign in / Sign up

Export Citation Format

Share Document