scholarly journals EVALUATING FATIGUE BEHAVIOR OF ASPHALT BINDERS AND MIXES CONTAINING DATE SEED ASH

2017 ◽  
Vol 23 (8) ◽  
pp. 1164-1175 ◽  
Author(s):  
Ali FOROUTAN MIRHOSSEINI ◽  
Amir KAVUSSI ◽  
Mohammad Hossain JALAL KAMALI ◽  
Mohammad Mehdi KHABIRI ◽  
Abolfazl HASSANI

Fatigue is one of the most occurring distresses in asphalt pavements. Asphalt binder plays a critical role in fa­tigue behavior of asphalt mixes. Modelling and predicting fatigue behavior of binders will result in more fatigue resistant mixes. In this research, possibility of using Date Seed Ash alongside two commonly used additives (namely, a siliceous and a limestone) as bitumen modifier were investigated. Then, the influence of these additives on fatigue behavior of asphalt binders and mixes was investigated. Linear Amplitude Sweep (LAS) test was carried out and Viscoelastic Con­tinuum Damage (VECD) parameter was determined. In addition, Indirect Tensile Fatigue Test (ITFT) was performed on mixes containing these additives. Correlation equations were developed to link fatigue behavior of binders to those of mixes. The results showed acceptable agreement between binders and mixes fatigue testing results. In addition, with predicted models it was able to obtain the asphalt binders contribution to mixes fatigue resistance. However, in the case of ash modified samples, no good correlation was observed between fatigue behavior of binders and that of mixes.

Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 47
Author(s):  
Lim Min Khiong ◽  
Md. Safiuddin ◽  
Mohammad Abdul Mannan ◽  
Resdiansyah

This paper presents the results of a laboratory-based experimental investigation on the properties of asphalt binder and hot-mix asphalt (HMA) mixes modified by locally available crumb rubber, which was used as a partial replacement of asphalt by weight. In this study, fine crumb rubber with a particle size in the range of 0.3–0.6 mm, obtained from scrap tires, was added to the asphalt binder through the wet process. Crumb rubber contents of 5%, 10%, 15%, and 19% by weight of asphalt were added to the virgin binder in order to prepare the modified asphalt binder samples, while the unmodified asphalt binder was used as the control sample. The crumb rubber modified binder samples were examined for measuring viscosity indirectly using the penetration test, and temperature resistance using the softening point test. Later, both the modified and unmodified asphalt binders were used to produce HMA mixes. Two categories of HMA mix commonly used in Malaysia—namely, AC 14 (dense-graded) and SMA 14 (gap-graded)—were produced using the modified asphalt binders containing 5%, 10%, 15%, and 19% crumb rubber. Two AC 14 and SMA 14 control mixes were also produced, incorporating the unmodified asphalt binder (0% crumb rubber). All of the AC 14 and SMA 14 asphalt mixes were examined in order to determine their volumetric properties, such as bulk density, voids in total mix (VTM), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA). In addition, the Marshall stability, Marshall flow, and stiffness of all of the AC 14 and SMA 14 mixes were determined. Test results indicated that the modified asphalt binders possessed higher viscosity and temperature resistance than the unmodified asphalt binder. The viscosity and temperature resistance of the asphalt binders increased with the increase in their crumb rubber content. The increased crumb rubber content also led to improvements in the volumetric properties (bulk density, VTM, VMA, and VFA) of the AC 14 and SMA 14 mixes. In addition, the performance characteristics of the AC 14 and SMA 14 mixes—such as Marshall stability, Marshall flow, and stiffness—increased with the increase in crumb rubber content. However, the AC 14 mixes performed much better than the SMA 14 mixes. The overall research findings suggest that crumb rubber can be used to produce durable and sustainable HMA mixes, with manifold environmental benefits, for use in flexible pavements carrying the heavy traffic load of highways.


Recycling ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 11 ◽  
Author(s):  
Eslam Deef-Allah ◽  
Magdy Abdelrahman ◽  
Mark Fitch ◽  
Mohyeldin Ragab ◽  
Mousumi Bose ◽  
...  

Road deterioration inspires researchers to enhance the properties of asphalt binder for better performing mixes. Recycled tire rubber, or crumb rubber modifier (CRM), and used motor oil (UMO) are two modifiers that enhance asphalt binder performance through two different mechanisms. CRM affects high-temperature properties while UMO modifies low-temperature properties. Potential environmental concerns arising from the use of UMO have been raised in the literature. In this paper, the two recycled materials were investigated for their ability to complement each other. Both performance benefits of using both materials and the environmental concerns of using UMO were studied. Four CRM asphalt binders were investigated: two with UMO and two without UMO. Environmental impacts were evaluated using gas chromatography to check air emissions for benzene, toluene, ethyl-benzene, and xylenes (BTEX). The potential for toxic leaching of elements from modified hot mix asphalt (HMA) were checked using the US Environmental Protection Agency (EPA) Toxicity Characteristic Leaching Protocol (TCLP). For asphalt binders modified by CRM-UMO combinations, CRM decreased the amounts of released BTEX components, presumably by absorbing UMO and slowing the release of BTEX. Leaching results concluded that UMO mixtures showed a notable percentage of sulfur (S) as compared to non-UMO mixes. All these leachate components were under EPA limits.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Oliver J. Coultrup ◽  
Martin Browne ◽  
Christopher Hunt ◽  
Mark Taylor

Previous attempts by researchers to predict the fatigue behavior of bone cement have been capable of predicting the location of final failure in complex geometries but incapable of predicting cement fatigue life to the right order of magnitude of loading cycles. This has been attributed to a failure to model the internal defects present in bone cement and their associated stress singularities. In this study, dog-bone-shaped specimens of bone cement were micro-computed-tomography (μCT) scanned to generate computational finite element (FE) models before uniaxial tensile fatigue testing. Acoustic emission (AE) monitoring was used to locate damage events in real time during tensile fatigue tests and to facilitate a comparison with the damage predicted in FE simulations of the same tests. By tracking both acoustic emissions and predicted damage back to μCT scans, barium sulfate (BaSO4) agglomerates were found not to be significant in determining fatigue life (p=0.0604) of specimens. Both the experimental and numerical studies showed that diffuse damage occurred throughout the gauge length. A good linear correlation (R2=0.70, p=0.0252) was found between the experimental and the predicted tensile fatigue life. Although the FE models were not always able to predict the correct failure location, damage was predicted in simulations at areas identified as experiencing damage using AE monitoring.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Nikhil Saboo ◽  
Praveen Kumar

Fatigue sensitivity of four different asphalt binders and three different asphalt mixes was evaluated in the study. Binders were subjected to Linear Amplitude Sweep (LAS) test at three temperatures of 10, 20, and 30°C. Four-point beam bending test (4PBBT) was conducted on the asphalt mixes at a temperature of 20°C for strain amplitudes varying from 200 to 1000 microstrains. Tests like retained Marshall Stability and indirect tensile strength (ITS) were also carried out to judge the mix performance. Experimental studies demonstrated that elastomeric modified binder and mixes gave the best performance in fatigue. Plastomeric modification was found to be highly strain susceptible and resulted in poor fatigue performance. The fatigue life of stone mastic asphalt (SMA) was found to be almost five times higher than the dense graded mixes. For similar strain levels, the results of LAS test could be linearly correlated with the 4PBBT results.


2021 ◽  
Vol 902 ◽  
pp. 135-143
Author(s):  
Mohammad Ali Khasawneh ◽  
Khalid Ghuzlan ◽  
Nada Bani Melhem

Rutting, fatigue cracking and low temperature cracking are the most important distresses in asphalt pavements as a result of changes in rheological properties of asphalt binder. Many types of modifiers were used to enhance asphalt behavior at both low and high temperatures. In this study, carbon nanotubes (CNT) were used as one of many nanomaterials that take a large attention in the latest research related to asphalt modification against different types of distresses. Effect of CNT on rheological properties of asphalt binder was investigated by testing unmodified and CNT modified asphalt binders using two of Superpave devices: Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR). Penetration, softening point, flash point and rotational viscosity (RV) tests were carried out as well. CNT was added in 0.1%, 0.5% and 1% by weight of asphalt binder. It was found that adding CNT in 0.5% and 1% increase stiffness of asphalt and consequently asphalt pavement rutting resistance. On the other hand, this increase in stiffness affected pavement behavior adversely which is not desirable for fatigue and low temperature cracking. However, Superpave specifications were still satisfied and asphalt binder’s relaxation properties were improved upon CNT modification. It was eventually found that 0.5% of CNT is the optimum percentage for the best performance.


2008 ◽  
Vol 35 (9) ◽  
pp. 908-917 ◽  
Author(s):  
Soon-Jae Lee ◽  
Serji N. Amirkhanian ◽  
Khaldoun Shatanawi ◽  
Carl Thodesen

This research investigates the influence of compaction temperature on rubberized asphalt mixes and binders. For this, four Superpave mix designs for four asphalt binders (control, 3% styrene–butadiene–styrene (SBS)-modified, 10% rubber-modified, and 15% rubber-modified) were carried out. A total of 160 specimens were manufactured at four compaction temperatures of 116, 135, 154, and 173 °C. The binders were artificially short-term aged for 2 h at the mixture compaction temperatures prior to the binder tests. The results from this study showed that: (i) the control and SBS-modified mixtures could have almost the same air–void contents at a wide range of compaction temperatures; (ii) the compaction temperatures significantly affected the volumetric properties of the rubberized mixes; (iii) the aging difference of asphalt binder in the mixture depending on the compaction temperature is not considered to be a main factor affecting the volumetric properties of the mixtures.


2017 ◽  
Vol 737 ◽  
pp. 554-559
Author(s):  
Pavel Coufalik ◽  
Ondrej Dasek ◽  
Petr Hyzl ◽  
Iva Krcmova

This paper compares the different approaches to assessing asphalt binders used in Europe and the Unites States. A series of pavement bitumens is assessed using European standards and also by the Performance Graded Asphalt Binder Specification based on AASHTO MP 1, which was developed as part of the Strategic Highway Research Program (SHRP) in the United States of America. The results show that the European approach places high requirements on the pavement bitumens in relation to their behavior at low-temperatures, while in case of the American approach, the key parameter is fatigue behavior after short-term and long-term aging. It is evident that it is necessary to evaluate properties of pavement bitumens after long-term aging in Europe, too.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 920 ◽  
Author(s):  
Fuquan Ma ◽  
Xue Luo ◽  
Zhiyi Huang ◽  
Jinchang Wang

The recovery property of asphalt binders plays an important role in the performance and service life of asphalt pavements. Since the internal stress is the driving force for the recovery of asphalt binders, the accurate measurement of the internal stress is full of significance. Based on this rationale, this paper aims to measure the internal stress of asphalt binders using a creep and step-loading recovery (CSR) test and characterizing the recovery behaviors by the internal stress. One base asphalt binder and one styrene–butadiene–styrene (SBS)-modified binder are selected in this study. The key elements of the CSR test are carefully designed and its accuracy is verified in three aspects, including the loading conditions, the effect of disturbance by step-loads, and accuracy of measured internal stress. Then, a kinetics-based recovery model is proposed to evaluate and predict the recovery properties of asphalt binders from its causal relationship. The constant-rate recovery activation energy indicates a major difference with nondestructive and destructive loading conditions, while the fast-rate recovery activation energy keeps almost constant regardless of the loading conditions. After that, the healing activation energy is calculated by using the kinetics-based recovery model and the results indicate that SBS modified asphalt binder shows better healing abilities than a base binder.


Author(s):  
Ramez Hajj ◽  
Angelo Filonzi ◽  
Syeda Rahman ◽  
Amit Bhasin

The low-temperature properties of asphalt binder have attracted attention in recent years thanks to an increase in the use of reclaimed asphalt pavements (RAP). Traditional methods to evaluate the low-temperature properties of the binder require a large amount of binder that needs to be recovered from RAP samples for testing with a Bending Beam Rheometer (BBR). To economize on sample size for RAP materials and also for emulsion residues, previous researchers have explored the potential of using a 4 mm diameter specimen with a Dynamic Shear Rheometer (DSR) in lieu of the BBR. To compare results from frequency sweep tests conducted using the DSR with results from the BBR, data from the former need to be converted to time domain and subsequently from a shear load response to an axial load response. Previous research studies have developed methods to accomplish these two conversions to compare data from the DSR with data from the BBR. The objective of this study is to examine some of these methods from the literature and elsewhere based on the principles of linear viscoelastic interconversion using a set of 11 different binders. Results using different analytical approaches from this study show that the DSR has good repeatability and verify that it can be used as a surrogate for the BBR to determine low-temperature properties, while exercising some caution with some of the assumptions related to Poisson’s ratio.


Author(s):  
Mohammad Hossain ◽  
A. S. M. Atiqur Rahim Khan ◽  
Hasan Faisal ◽  
Rafiqul Tarefder

Past studies have shown that vapor conditioning to 100% Relative Humidity (RH) reduces the fatigue life of viscoelastic materials such as asphalt binder. However, it is not known how partial vapor conditions such as RH 25%, 49%, and 71% affect asphalt binder’s fatigue behavior. In addition, it is unknown which viscoelastic material parameter (i.e. viscus or elastic parameter) is responsible for damage in asphalt binder or Asphalt Concrete (AC) in general and what steps can be taken to reduce fatigue damage. In this study, films of asphalt binders were prepared and partially vapor-conditioned in enclosed chambers containing potassium acetate (25% RH), potassium carbonate (49% RH), and sodium chloride solutions (71% RH). Creep nanoindentation tests were performed on the vapor-conditioned asphalt film samples. The nano-creep test data are fitted using Burgers models. The Burgers model shows that elasticity increases and viscosity decreases as RH% increases. To this end, a Finite Element Method (FEM) model is developed in ABAQUS to examine the fatigue performance of the asphalt binder at 49% vapor-conditioned only. Using the spring and dashpot elements of Burgers model as FEM inputs, simulations are run. Results indicate that an increase in binder viscosity would reduce permanent deformation in the viscoelastic material.


Sign in / Sign up

Export Citation Format

Share Document