scholarly journals Preparation and Evaluation of Sunscreen Nanoemulsions with Synergistic Efficacy on SPF by Combination of Soybean Oil, Avobenzone, and Octyl Methoxycinnamate

2019 ◽  
Vol 7 (17) ◽  
pp. 2751-2756
Author(s):  
Anayanti Arianto ◽  
Gra Cella ◽  
Hakim Bangun

BACKGROUND: Soybean oil contains vitamin E and acts as a natural sunscreen which can absorb Ultra Violet (UV) B light and has antioxidant properties to reduce the photooxidative damage that results from UV-induced Reactive Oxygen Species production. The UV blocking from most natural oils is insufficient to obtain a high UV protection. The strategies for preparations of sunscreen products with high SPF can be done by nanoemulsion formulation and Ultra Violet filter combinations of Soybean Oil, Avobenzone and Octyl methoxycinnamate. AIM: The purpose of this study was to prepare and in vitro efficacy evaluation of sunscreen nanoemulsion containing Soybean oil, Avobenzone and Octyl methoxycinnamate. METHODS: The sunscreen nanoemulsions were prepared by the high energy emulsification method. The formulation uses a combination of 3% Avobenzone, 7.5% Octyl methoxycinnamate, with different ratio of Soybean oil and Liquid Paraffin. The nanoemulsion was evaluated for droplet sizes by using particle size analyzer, physical stability in room temperature (25 ± 2°C during experiment for 12 weeks of storage, physical stability (cycling test), phase separation by centrifugation at 3750 rpm for 5 hours, pH, viscosity, and Sun Protection Factor (SPF) value by UV spectrophotometric. The SPF value of sunscreen nanoemulsion was compared to sunscreen nanoemulsion without Soybean Oil and sunscreen emulsion. Particle morphology observation of nanoemulsion by using Transmission Electron Microscope. RESULTS: The sunscreen nanoemulsion formulation containing a combination of 3% Avobenzone, 7.5% Octyl methoxycinnamate with a ratio of 2.73% Soybean Oil and 0.27% Paraffin Oil resulted in the smallest average droplet size of 68.47 nm. The sunscreen nanoemulsion without Soybean Oil had an average droplet size of 384.07 nm. The globules size was increased during the experiment for 12 weeks of storage at room temperature, but there was no phase separation after centrifugation. The formulation of sunscreen emulsion, phase separation was formed after centrifugation. The nanoemulsion had a pH value of 7.23 ± 0.06 and a viscosity value of 133.33 ± 7.22 cP. The sunscreen nanoemulsion containing a combination of 3% Avobenzone, 7.5% Octyl methoxycinnamate 2.73%, Soybean Oil, 2.73% and 0.27% Liquid Paraffin had SPF value (21.57 ± 1.21) higher than sunscreen nanoemulsion without Soybean Oil (16.52 ± 0.98) and sunscreen emulsion (15.10 ± 0.22). The TEM analysis of globules morphology showed that the sunscreen nanoemulsion formed a spherical globule. CONCLUSION: The sunscreen nanoemulsion containing a combination of 3% Avobenzone, 7.5% Octyl Methoxycinnamate, 2.73% Soybean Oil and 0.27% Liquid Paraffin showed synergistic sunscreen efficacy on SPF. This sunscreen nanoemulsion is more stable than sunscreen emulsion formulation during the experiment for 12 weeks at room temperature.

1996 ◽  
Vol 441 ◽  
Author(s):  
Mitsuhiro Kushibe ◽  
Yuriy V. Shusterman ◽  
Nikolai L. Yakovlev ◽  
Leo J. Schowalter

AbstractMagnesium is incorporated into the growth of Ca1-xMgxF2 to reduce the lattice constant of fluorite (CaF2) which is 0.6% larger than that of Si at room temperature. When grown epitaxially on Si(111) substrates at 300°C, the lattice constant of the alloy became smaller than that of Si by 1.5% when the Mg concentration was around 20%. At higher Mg concentrations, the lattice constant did not decrease any further. This invariability of the lattice constant was caused by a phase separation of the Ca1-xMgxF2 layer into a Mg-rich region and a Mg-deficient region. When the growth temperature was increased, the critical Mg concentration for the phase separation became smaller. When Ca1-xMgxF2 was grown on vicinal Si(111) substrates, the reflection high energy electron diffraction (RHEED) intensity oscillations reflected no change in the composition, suggesting segregation of a Mg-rich phase along the steps. Nevertheless, the oscillations in the intensity of the specular spot for Ca1-xMgxF2 lasted longer than those observed for pure CaF2, suggesting a flatter surface for the alloy. Scanning tunneling microscopy (STM) observations support this model.


Author(s):  
NIKHIL NITIN NAVINDGIKAR ◽  
K. A. KAMALAPURKAR ◽  
PRASHANT S. CHAVAN

Objective: To formulate and evaluate herbal cream using Aloe Vera gel, dimethyl sulphoxide extracts of Neem (Azadirachta indica) and Tulsi (Ocimumtenuiflorum) to give multipurpose effect. Methods: The cream was prepared by using the cream base that is bee’s wax, liquid paraffin, borax, methylparaben, distilled water, rose oil, Aloe Vera gel, dimethyl sulphoxide extracts of Neem and Tulsi. The cream was prepared by using the slab technique/extemporaneous method for geometric and homogenous mixing of all the excipients and the herbal extracts. By using slab technique, we have developed three batches of our herbal cream, namely F1H, F2H, and F3H. All three batches were evaluated for different parameters like appearance, PH, viscosity, phase separation. Results: All the three formulations F1H, F2H, F3H showed good appearance, PH, adequate viscosity and no phase separation was observed. Also, the formulations F1H, F2H, F3H showed no redness, erythema and irritation during irritancy study and they were easily washable. All the three formulations F1H, F2H, F3H were stable at room temperature. Conclusion: All three herbal ingredients showed significant different activities. Based on the results, we can suggest that all the three formulations F1H, F2H, F3H were stable and can be safely used on the skin.


2020 ◽  
Vol 4 (1) ◽  
pp. 5 ◽  
Author(s):  
Marcel Jonathan Hidajat ◽  
Wantaek Jo ◽  
Hyeonhyo Kim ◽  
Jongho Noh

Limonene as an interesting bioactive material that has great benefits due to its antimicrobial and anti-carcinogen properties. However, it has several limitations such as its oxidative and oily nature. In order to overcome these limitations, a high-pressure homogenizer (HPH) was utilized to produce limonene nanoemulsion, which enhances its dispersibility while preventing oxidation with great stability. Limonene was pre-mixed with soybean oil as carrier oil prior to emulsification. The effect of soybean oil to limonene ratio, number of pass, homogenization pressure, emulsifier concentration and homogenization method were observed. A stability test was also conducted for 28 days at room temperature. The result revealed that soybean oil and limonene demonstrated a certain ratio to produce the most stable nanoemulsion. Meanwhile, emulsion size could be reduced from 327.8 nm to 55.5 nm in five passes at 1000 bar. Increasing the emulsifier concentration could reduce the droplet size to 40 nm. A comparison with other emulsification method showed that HPH was the best emulsification technique due to its intense emulsification power resulted from shear, cavitation, and droplet impacts. This study reveals that HPH is a great and simple way to produce stable limonene nanoemulsion for the cosmetic, pharmaceutical, and food industries.


2013 ◽  
Vol 747 ◽  
pp. 725-728
Author(s):  
Sirikarn Pengon ◽  
Chutima Limmatvapirat ◽  
Pornsak Sriamornsak ◽  
Sontaya Limmatvapirat

The aim of study was to prepare a water compatible form of soybean oil through nanoemulsification. Factors affecting properties of nanoemulsions containing soybean oil such as types and amounts of surfactants (Tween 60, Cremophor RH-40, sodium lauryl sulfate (SLS) and Lutrol F-127) were investigated. The results demonstrated that types and amount of surfactants affected the formation and physical stability of nanoemulsions. The emulsions containing Cremophor RH-40 and Lutrol F-127 showed 100% creaming while those containing Tween 60 and SLS indicated the lower percentage of creaming suggesting the less physical stability. However, the formation of nanoemulsions was not observed in the formula containing Lutrol F-127. The average droplet size of emulsions was 1766 nm and 193 nm for emulsions containing 5% w/w Lutrol F-127 and Cremophor RH-40, respectively. The droplet size was also affected by the amount of Cremophor RH-40. The droplet size was decreased from 795 to 114 nm as increasing amount of Cremophor RH-40 from 2.5 to 10 %w/w. Additionally, the properties of nanoemulsions containing Cremophor RH-40, including physical appearance, droplet size and zeta potential, were not change even after temperature cycling. In conclusion, the more water compatible form of soybean oil was accomplished through incorporation into the nanoemulsions with specific type and amount of surfactant.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1411
Author(s):  
Seyed Mehdi Niknam ◽  
Isabel Escudero ◽  
José M. Benito

Currently, industry is requesting proven techniques that allow the use of encapsulated polyphenols, rather than free molecules, to improve their stability and bioavailability. Response surface methodology (RSM) was applied in this work to determine the optimal composition and operating conditions for preparation of water-in-oil-in-water (W/O/W) emulsions loaded with phenolic rich inner aqueous phase from olive mill wastewater. A rotor-stator mixer, an ultrasonic homogenizer and a microfluidizer processor were tested in this study as high-energy emulsification methods. Optimum results were obtained by means of microfluidizer with 148 MPa and seven cycles input levels yielding droplets of 105.3 ± 3.2 nm in average size and 0.233 ± 0.020 of polydispersity index. ζ-potential, chemical and physical stability of the optimal W/O/W emulsion were also evaluated after storage. No droplet size growth or changes in stability and ζ-potential were observed. Furthermore, a satisfactory level of phenolics retention (68.6%) and antioxidant activity (89.5%) after 35 days of storage at room temperature makes it suitable for application in the food industry.


Author(s):  
ANAYANTI ARIANTO ◽  
HAKIM BANGUN ◽  
SUMAIYAH ◽  
CHRISTY NATASYA DWI YANTI PUTRI SIREGAR

Objective: The purpose of this study was to develop a nanoemulgel containing vegetable oil of carrot seed oil as an effective natural sunscreen and skin anti-aging. Methods: Nanoemulgels containing 4% carrot seed oil were formulated in three formulas with different ratios of Tween 80 and Sorbitol and prepared by using the high-energy emulsification method. The nanoemulgels were determined for the organoleptic characteristic, globule size, pH, physical stability during storage for 12 w at three different temperatures (room, high and low temperature), centrifugation, and cycling test. The Sun Protection Factor (SPF) value was determined by UV spectrophotometric method and the effectiveness of anti-aging was evaluated by using a skin analyzer and the results were compared with sunscreen emulgel. Results: Nanoemulgel containing 4% carrot seed oil with a ratio of Tween 80 as surfactant and Sorbitol as co-surfactant 40 and 20 resulted in the smallest mean droplet size of 338.34 nm and the sizes were increased during 12 w of storage at room temperature but still in the nano size and this nanoemulgel did not show phase separation or still stable. These nanoemulgels were also stable after the centrifugation and cycling test. The emulgel preparation was not stable or showed phase separation after the centrifugation test. The SPF value obtained from the nanoemulgel was 20.28±0.22 and these values were higher than the sunscreen emulgel (13.94±0.27). The pore size, spot, and wrinkles of the volunteer skin were reduced after using the nanoemulgel containing 4% carrot seed. Conclusion: The sunscreen and skin anti-aging activity of nanoemulgel preparation containing 4% carrot seed oil with a ratio of surfactant Tween 80 and co-surfactant Sorbitol 40 and 20 were more effective compare with emulgel preparation.


The exposure of polymethylmethacrylate ( PMM ) and many other macromolecules to high-energy y- or electron radiation produces a degradation of the molecular chains. This may result from either ionization or excitation. Ultra-violet light results in excitation only. This paper compares the effects of these forms of radiation. The degradation of PMM has been studied in thick or thin films, and in solutions in benzene. It is found that at room temperature degradation (random main chain fracture) occurs with ultra-violet radiation, whereas at higher temperatures the reaction is one of chain depolymerization. The energy absorbed per main chain fracture is about 550 eV with ultra ­ violet radiation, so that less than 1 % of the quanta absorbed are effective; this compares with about 65 eV of γ-energy absorbed per fracture. Apart from this difference in efficiency, the two reactions are very similar. In both cases the number of fractures is proportional to dose and the radicals formed (as seen by e.s.r.) are identical in character. Somewhat similar changes also appear in the optical spectrum, although these may be modified by surface oxygen. These results show no significant contribution from any ionization produced by high-energy radiation.


2011 ◽  
pp. 151-157 ◽  
Author(s):  
Marijana B. Saka ◽  
Julianna F. Gyura ◽  
Aleksandra Mišan ◽  
Zita I. Šereš ◽  
Biljana S. Pajin ◽  
...  

The antioxidant activity of cookies prepared by the addition of sugarbeet dietary fibers was investigated in order to estimate their influence on functional characteristics and shelf-life of cookies. Treated fiber (TF) was obtained from sugarbeet by extraction with sulfurous acid (75 °C at pH = 5.7during 60 min) and treatment with hydrogen peroxide (20 g/LH2O2 at pH = 11 during 24 h). The fiber obtained was dried (80 °C), ground and sieved. TF was investigated in comparison with commercially available Fibrex®. The cookies were prepared by the addition of 0, 7, 9 and 11% of sugarbeet dietary fiber as a substitute for wheat flour in the formulation of cookies. The antioxidant properties of cookies were tested every 7 days using a DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity test during 6 weeks of storage at room temperature (23 ± 1 ºC). The obtained results indicated that substitution of wheat flour with Fibrex® in the formulation of cookies upgraded the antioxidant activity, i.e. the functional characteristics of Fibrex®-enriched cookies and could prolong their shelf-life. In contrast, TF did not increase the antioxidant activity of TF-enriched cookies. The better antioxidant activities of Fibrex®-enriched cookies could be attributed to the presence of ferulic acid.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1535
Author(s):  
Yanjie Wang ◽  
Yingjie Zhang ◽  
Hongyu Cheng ◽  
Zhicong Ni ◽  
Ying Wang ◽  
...  

Lithium metal batteries have achieved large-scale application, but still have limitations such as poor safety performance and high cost, and limited lithium resources limit the production of lithium batteries. The construction of these devices is also hampered by limited lithium supplies. Therefore, it is particularly important to find alternative metals for lithium replacement. Sodium has the properties of rich in content, low cost and ability to provide high voltage, which makes it an ideal substitute for lithium. Sulfur-based materials have attributes of high energy density, high theoretical specific capacity and are easily oxidized. They may be used as cathodes matched with sodium anodes to form a sodium-sulfur battery. Traditional sodium-sulfur batteries are used at a temperature of about 300 °C. In order to solve problems associated with flammability, explosiveness and energy loss caused by high-temperature use conditions, most research is now focused on the development of room temperature sodium-sulfur batteries. Regardless of safety performance or energy storage performance, room temperature sodium-sulfur batteries have great potential as next-generation secondary batteries. This article summarizes the working principle and existing problems for room temperature sodium-sulfur battery, and summarizes the methods necessary to solve key scientific problems to improve the comprehensive energy storage performance of sodium-sulfur battery from four aspects: cathode, anode, electrolyte and separator.


2021 ◽  
Vol 11 (14) ◽  
pp. 2003493
Author(s):  
Alex Yong Sheng Eng ◽  
Vipin Kumar ◽  
Yiwen Zhang ◽  
Jianmin Luo ◽  
Wenyu Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document